zoukankan      html  css  js  c++  java
  • [HDU4316]Mission Impossible(计算几何/凸包/半平面交)

    题目链接:

    HDU4316

    计算几何太duliu了~

    题目大意:空间中有一个物体,上空有(3)个摄像头拍摄地面,求摄像头公共盲区面积大小

    首先求出每一个摄像头的盲区:

    将物体的每一个点投影到地面再求凸包即可。

    然后将(3)个凸包的每一条边都拿来一起做一次半平面交,求出公共盲区

    最后三角剖分求面积就好了。

    代码:

    #include <cmath>
    #include <cstdio>
    #include <vector>
    #include <algorithm>
    
    const double Eps=1e-8;
    inline double Abs(double x){return x>=0?x:-x;}
    inline int Sign(double x){return Abs(x)<Eps?0:(x>0?1:-1);}
    
    typedef struct Point
    {
    	double x,y;
    	inline Point operator+(Point o){return (Point){x+o.x,y+o.y};}
    	inline Point operator-(Point o){return (Point){x-o.x,y-o.y};}
    	inline Point operator*(double k){return (Point){x*k,y*k};}
    	inline bool operator<(Point o){return Sign(x-o.x)?x<o.x:y<o.y;}
    	inline bool operator==(Point o){return !Sign(x-o.x)&&!Sign(y-o.y);}
    }Vector;
    inline double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
    inline double Cross(Vector A,Vector B){return A.x*B.y-A.y*B.x;}
    
    struct Point_3D{double x,y,z;};
    inline Point Projection(Point Light,Point_3D Object)//Object在Light下的投影
    {return Light+((Vector){Object.x,Object.y}-Light)*(100/(100-Object.z));}
    
    struct Line
    {
    	Point p;Vector v;double Ang;Line(){}
    	Line(Point ps,Vector vs):p(ps),v(vs){Ang=atan2(v.y,v.x);}
    	inline bool operator<(Line o){return Ang<o.Ang;}
    };
    
    Point_3D Mac[105];//机器坐标
    Point Camera[5];//摄像头坐标
    
    Point S[105];
    std::vector<Point> Convex_Hull(std::vector<Point> p)//求凸包
    {
    	std::vector<Point> Ans;
    	std::sort(p.begin(),p.end());
    	int n=std::unique(p.begin(),p.end())-p.begin(),Sn=0;
    	for(int i=0;i<=n-1;S[++Sn]=p[i++])
    		while(Sn>=2&&Sign(Cross(p[i]-S[Sn-1],S[Sn]-S[Sn-1]))<0)--Sn;
    	for(int i=1;i<Sn;++i)Ans.push_back(S[i]);
    	Sn=0;
    	for(int i=n-1;i>=0;S[++Sn]=p[i--])
    		while(Sn>=2&&Sign(Cross(p[i]-S[Sn-1],S[Sn]-S[Sn-1]))<0)--Sn;
    	for(int i=1;i<Sn;++i)Ans.push_back(S[i]);
    	return Ans;
    }
    
    inline bool OnLeft(Point p,Line l){return Sign(Cross(p-l.p,l.v))==-1;}//点p是否在线l左侧
    inline Point CrossP(Line A,Line B){return A.p+A.v*(Cross(B.v,A.p-B.p)/Cross(A.v,B.v));}//直线交点
    
    Point P[305];
    Line Q[305];
    std::vector<Point> HPI(std::vector<Line> L)//半平面交
    {
    	std::sort(L.begin(),L.end());
    	int n=L.size(),Qh=0,Qt=0;
    	Q[0]=L[0];
    	for(int i=1;i<n;++i)
    	{
    		while(Qh<Qt&&!OnLeft(P[Qt-1],L[i]))--Qt;
    		while(Qh<Qt&&!OnLeft(P[Qh],L[i]))++Qh;
    		if(Sign(Cross(L[i].v,Q[Qt].v)))Q[++Qt]=L[i];
    		else if(OnLeft(L[i].p,Q[Qt]))Q[Qt]=L[i];
    		if(Qh<Qt)P[Qt-1]=CrossP(Q[Qt-1],Q[Qt]);
    	}
    	while(Qh<Qt&&!OnLeft(P[Qt-1],Q[Qh]))--Qt;
    	std::vector<Point> Ans;
    	if(Qt-Qh<=1)return Ans;//没有公共区域
    	P[Qt]=CrossP(Q[Qh],Q[Qt]);
    	for(int i=Qh;i<=Qt;++i)Ans.push_back(P[i]);
    	return Ans;
    }
    
    double Area(std::vector<Point> Poly)//求多边形面积
    {
    	double Sum=0;
    	int n=Poly.size();
    	for(int i=0;i<n;++i)Sum+=Cross(Poly[i],Poly[(i+1)%n]);
    	return Sum/2;
    }
    
    int main()
    {
    	//freopen("in.txt","r",stdin);
    	for(int n;~scanf("%d",&n);)
    	{
    		for(int i=1;i<=n;++i)scanf("%lf%lf%lf",&Mac[i].x,&Mac[i].y,&Mac[i].z);
    		for(int i=1;i<=3;++i)scanf("%lf%lf",&Camera[i].x,&Camera[i].y);
    		std::vector<Point> Shadow[4];
    		std::vector<Line> Ls;
    		for(int i=1;i<=3;++i)
    		{
    			for(int j=1;j<=n;++j)Shadow[i].push_back(Projection(Camera[i],Mac[j]));//投影到地面
    			Shadow[i]=Convex_Hull(Shadow[i]);//求出凸包
    			int Ss=Shadow[i].size();
    			for(int j=0;j<Ss;++j)Ls.push_back((Line){Shadow[i][(j+1)%Ss],Shadow[i][j]-Shadow[i][(j+1)%Ss]});//转化位半平面交问题
    		}
    		Shadow[0]=HPI(Ls);
    		printf("%.2f
    ",Abs(Area(Shadow[0])));//面积取绝对值
    	}
    	return 0;
    }
    
  • 相关阅读:
    学习进度条54
    学习进度条53
    学习进度条52
    学习进度条51
    学习进度条50
    学习进度条49
    学习进度条48
    学习进度条47
    学习进度条45
    线程池中的阻塞队列选择
  • 原文地址:https://www.cnblogs.com/LanrTabe/p/11254274.html
Copyright © 2011-2022 走看看