zoukankan      html  css  js  c++  java
  • Caffe学习--Blob分析

    Caffe_blob

    1.基本数据结构

    Blob为模板类,可以理解为四维数组,n * c * h * w的结构,Layer内为blob输入data和diff,Layer间的blob为学习的参数.内部封装了SyncedMemory类,该类负责存储分配和主机与设备的同步

    protected:
        shared_ptr<SyncedMemory> data_; // data指针
        shared_ptr<SyncedMemory> diff_; // diff指针
        vector<int> shape_; // blob形状
        int count_; // blob的nchw
        // 当前的Blob容量,当Blob reshape后count> capacity_时,capacity_ = count_;
        // 重新new 然后 reset data和 diff
        int capacity_;
    
    

    2.常用函数

    Blob类中常用的函数如下所示
    
        Blob<float>test;
        //explicit关键字的作用是禁止单参数构造函数的隐式转换
        explicit Blob(const int num, const int channels, const int height,
          const int width);
        test.shape_string();//初始为空 0 0 0 0
        //Reshape函数将num,channels,height,width传递给vector shape_
        test.Reshape(1,2,3,4);// shape_string() 1,2,3,4
    
        test.shape(i);// NCHW
        test.count(int start_axis,int end_axis); // start_axis---end_axis .x* shape[i]
        test.count();// nchw  count(1) chw count(2) hw.....
        //shared_ptr<SyncedMemory> data_->cpu_data();
        const float* data = test.cpu_data();
        const float* diff = test.cpu_diff();
        float* data_1 = test.mutable_cpu_data();//mutable修饰的表示可以修改内部值
        float* diff_1 = test.mutable_cpu_diff();
        test.asum_data();//求和 L1范数
        test.sumsq_data();//平方和 L2范数
        test.Update();//data = data-diff;
        a.ToProto(BlobProto& bp,true/false);//(FromProto)
        // if < 0 ,return num_axis()+axis_index;//索引序列
        int index = a.CanonicalAxisIndex(int axis_index);
        int offset(n,c,h,w);//((n*channels()+c)*height()+h)*width()+w
        float data_at(n,c,h,w);//return cpu_data()[offset(n,c,h,w)];
        float diff_at(n,c,h,w);//return cpu_diff()[offset(n,c,h,w)];
        inline const shared_ptr<SyncedMemory>& data() const{return _data};
        void scale_data(Dtype scale_factor);// data乘以一个标量。同理 scale_diff();
        void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
          bool reshape = false);  // copy_diff是否复制diff
    

    3.写入磁盘操作

      //Blob内部值写入到磁盘
      Blob<float>a;
      a.Reshape(1,2,3,4);
      const int count = a.count();
      for (size_t i = 0; i < count; i++) {
          a[i] = i;//init the test Blob
      }
      BlobProto bp,bp2;
      a.ToProto(&bp,true);//写入data和diff到bp中
      WriteProtoToBinaryFile(bp,"a.blob");//写入磁盘
      ReadProtoFromBinaryFile("a.blob",&bp2);//从磁盘读取blob
      Blob<float>b;
      b.FromProto(bp2,true);//序列化对象bp2中克隆b,完整克隆
      for (size_t n = 0; n < b.num(); n++) {
          for (size_t c = 0; c < b.channels(); c++) {
             for (size_t h = 0; h < b.height(); h++) {
                 for (size_t w = 0; w < b.width(); w++) {
                     cout<<"b["<<n<<"]["<<c<<"]["<<h<<"]["<<w<<"]["<<w<<"]="<<
                     b[(((n*b.channels()+c)*b.height)+h)*b.width()+w]<<endl;
                     //(((n*c+ci)*h+hi)*w+wi)
                 }
             }
          }
      }
    
    

    4.部分函数的具体实现

    本部分的实现未考虑参数是否合理。一般操作blob需要分CPU和GPU,采用math_functions具体计算
    
      template <typename Dtype>
      void Blob<Dtype>::Reshape(const vector<int>& shape){//reshape操作
        count_ = 1;//初始count_ NCHW;
        shape_.resize(shape.size());
        for (size_t i = 0; i < shape.size(); i++) {
          count_ *= shape[i];
          shape_[i] = shape[i];
          if (count_ > capacity_) { //reshape的size大于了目前的最大容量
             capacity_ = count_;
             data_.reset(new SyncedMemory(capacity_*sizeof(Dtype)));
             diff_.reset(new SyncedMemory(capacity_*sizeof(Dtype)));
          }
        }
      }
    
     template <typename Dtype>
     void Blob<Dtype>::Reshape(int n,int c,int h ,int w){//reshape操作
       vector<int>shape(4);
       shape[0] = n;
       shape[1] = c;
       shape[2] = h;
       shape[3] = w;
       Reshape(shape);
     }
    
     template <typename Dtype>
     const Dtype* Blob<Dtype>::cpu_data(){
       //实际调用的shared_ptr<SyncedMemory>data_->cpu_data();,同理cpu_diff();
       CHECK(data_);
       return (const Dtype*)data_->cpu_data();
     }
    
    template <typename Dtype>
    void Blob<Dtype>::Updata(){ //data = data-diff;需要判断cpu OR gpu
      switch (data_->head()) {
        case SyncedMemory::HEAD_AT_CPU:
          caffe_axpy<Dtype>(count_,Dtype(-1),
          static_cast<const<Dtype*>(diff_->cpu_data()),
          static_cast<Dtype*>(data_->mutable_cpu_data()));
      }
        case SyncedMemory::HEAD_AT_GPU://在gpu或者CPU/GPU已经同步
        case SyncedMemory::SYNCED:
        #ifndef CPU_ONLY
          caffe_gpu_axpy<Dtype>(count_.Dtype(-1),
          static_cast<const<Dtype*>(diff_->gpu_data()),
          static_cast<Dtype*>(data_->mutable_gpu_data()))
    }
    
    template <typename Dtype> //从source 拷贝数据,copy_diff控制是拷贝diff还是data
    void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
      if (source.count() != count_ || source.shape() != shape_) {
        if (reshape) {
          ReshapeLike(source);
        }
      }
      switch (Caffe::mode()) {
      case Caffe::GPU:
        if (copy_diff) {  //copy diff
          caffe_copy(count_, source.gpu_diff(),
              static_cast<Dtype*>(diff_->mutable_gpu_data()));
        } else {
          caffe_copy(count_, source.gpu_data(),
              static_cast<Dtype*>(data_->mutable_gpu_data()));
        }
        break;
      case Caffe::CPU:
        if (copy_diff) {
          caffe_copy(count_, source.cpu_diff(),
              static_cast<Dtype*>(diff_->mutable_cpu_data()));
        } else {
          caffe_copy(count_, source.cpu_data(),
              static_cast<Dtype*>(data_->mutable_cpu_data()));
        }
        break;
      default:  
        LOG(FATAL) << "Unknown caffe mode.";
      }
    }
    
    
    template <typename Dtype>
    void Blob<Dtype>::ToProto(BlobProto* proto,bool write_diff){
        proto->clear_shape();
        for (size_t i = 0; i < shaoe_.size(); i++) {
            proto->mutable_shape()->add_dim(shape_[i]);
        }
        proto->clear_data();
        proto->clear_diff();
        const Dtype* data_vec = cpu_data();
        for (size_t i = 0; i < count_; i++) {
            proto->add_data(data_vec[i]);//data写入proto
        }
        if (write_diff) {
            const Dtype* diff_vec = cpu_diff();
            for (size_t i = 0; i < count_; i++) {
                proto->add_diff(diff_vec[i]);//diff写入proto
            }
        }
    }
    
    

    5.说明

        /*Blob作为一个最基础的类,其中构造函数开辟一个内存空间来存储数据,Reshape
        函数在Layer中的reshape或者forward操作中来调整top的输出维度。同时在改变Blob
        大小时, 内存将会被重新分配如果内存大小不够了,并且额外的内存将不会被释放。
        对input的blob进行reshape, 若立马调用Net::Backward是会出错的,因为reshape
        之后,要么Net::forward或者Net::Reshape就会被调用来将新的input shape传播
        到高层 */
    
    
  • 相关阅读:
    Zookeeper全解析——Paxos作为灵魂(转)
    Zookeeper全解析——Client端(转)
    zk 04之 Zookeeper Api(java)与应用
    zk 05之:ZooKeeper的配置
    ZooKeeper典型应用场景(转)
    ZooKeeper程序员指南(转)
    zk 01之 ZooKeeper概述
    zk 02之 Windows安装和使用zookeeper
    缓存与数据库一致性之一:缓存更新设计
    Android开发学习之Intent具体解释
  • 原文地址:https://www.cnblogs.com/LaplaceAkuir/p/7694973.html
Copyright © 2011-2022 走看看