zoukankan      html  css  js  c++  java
  • 深度学习岗位面试题

    1: LSTM结构推导,为什么比RNN好?
    答案:推导forget gate,input gate,cell state, hidden information等的变化;因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸;

    2:梯度消失爆炸为什么?
    答案:略

    3:为什么你用的autoencoder比LSTM好?
    答案:我说主要还是随机化word embedding的问题,autoencoder的句子表示方法是词袋方法,虽然丢失顺序但是保留物理意义;(?)

    4: overfitting怎么解决:
    答案:dropout, regularization, batch normalizatin;

    5:dropout为什么解决overfitting,L1和L2 regularization原理,为什么L1 regularization可以使参数优化到0, batch normalizatin为什么可以防止梯度消失爆炸;
    答案:略
    6: 模型欠拟合的解决方法:
    答案:我就说到了curriculum learning里面的sample reweight和增加模型复杂度;还有一些特征工程;然后问了常用的特征工程的方法;

    7:(简历里面写了VAE和GAN还有RL,牛逼吹大了)VAE和GAN的共同点是什么,解释一下GAN或者强化学习如何引用到你工作里面的;
    答案:略

    传统机器学习
    1:SVM的dual problem推导;
    2:random forest的算法描述+bias和variance的分解公式;
    3:HMM和CRF的本质区别;
    4:频率学派和贝叶斯派的本质区别;
    5:常用的优化方法;
    6: 矩阵行列式的物理意义(行列式就是矩阵对应的线性变换对空间的拉伸程度的度量,或者说物体经过变换前后的体积比)

  • 相关阅读:
    【转载】 下载百度云的正确姿势---油猴插件
    微信公众号开发
    F5 BIG-IP – Useful SNMP oids to monitor
    F5负载均衡 MIBs bigip oid
    常用OID(SNMP)
    有趣的深度图:可见性问题的解法
    Unity User Group 北京站:《Unity5.6新功能介绍以及HoloLens开发》
    再议Unity优化
    工作中的趣事:聊聊ref/out和方法参数的传递机制
    聊聊网络游戏同步那点事
  • 原文地址:https://www.cnblogs.com/LarryGates/p/7230043.html
Copyright © 2011-2022 走看看