zoukankan      html  css  js  c++  java
  • 13 DFT变换的性质

    DFT变换的性质

    线性性质

    [egin{aligned} y[n]&=ax[n]+bw[n]xrightarrow{DFT}Y[k]=sum_{n=0}^{N-1}(ax[n]+bw[n])W_N^{kn}\ &=asum_{n=0}^{N-1}x[n]W_N^{kn}+bsum_{n=0}^{N-1}w[n]W_N^{kn} \ &=aX[k]+bW[k] end{aligned} ]

    时移性质

    [egin{aligned} x[n-n_0]&xrightarrow{DFT}sum_{n=0}^{N-1}x[<n-n_0>_N]e^{-jfrac{2pi k}{N}n} \ &xrightarrow{m=n-n_0}sum_{m=-n_0}^{N-n_0-1}x[<m>_N]e^{-jfrac{2pi k}{N}(m+n_0)} \ &=W_{N}^{kn_0}sum_{m=0}^{N-1}x[m]W_{N}^{km} \ &=W_{N}^{kn_0}X[k] end{aligned} ]

    频移性质

    [egin{aligned} W_N^{-k_0n}x[n]xrightarrow{DFT}sum_{n=0}^{N-1}x[n]W_N^{(k-k_0)n}=X[<k-k_0>_N] end{aligned} ]

    时域反转

    [egin{aligned} x[<-n>_N]&xrightarrow{DFT}sum_{n=0}^{N-1}x[<-n>_N]W_{N}^{kn} \ &xrightarrow{m=-n}sum_{m=-(N-1)}^{0}x[<m>_N]W_{N}^{-km} \ &=sum_{m=0}^{N-1}x[m]W_{N}^{-km} \ &=X[<-k>_N] end{aligned} ]

    时域共轭

    [egin{aligned} x^{*}[n]&xrightarrow{DFT}sum_{n=0}^{N-1}x^{*}[n]W_N^{kn} \ &=(sum_{n=0}^{N-1}x[n]W_N^{-kn})^{*} \ &=X^{*}[<-k>_N] end{aligned} ]

    由上面两个可以推得

    [color{red}x^{*}[<-n>_N]xrightarrow{DFT}X^{*}[k] ]

    对称性质

    [x_{cs}[n]=frac{1}{2}(x[n]+x^{*}[<-n>_N])xrightarrow{DFT}frac{1}{2}(X[k]+X^{*}[k])=X_{re}[k] ]

    [x_{ca}[n]=frac{1}{2}(x[n]-x^{*}[<-n>_N])xrightarrow{DFT}frac{1}{2}(X[k]-X^{*}[k])=jX_{im}[k] ]

    [x_{re}[n]=frac{1}{2}(x[n]+x^{*}[n])xrightarrow{DFT}frac{1}{2}(X[k]+X^{*}[<-k>_N])=X_{cs}[k] ]

    [jx_{im}[n]=frac{1}{2}(x[n]-x^{*}[n])xrightarrow{DFT}frac{1}{2}(X[k]-X^{*}[<-k>_N])=X_{ca}[k] ]

    卷积性质

      假设(x[n],w[n])都是长度为(N)的有限长序列,它们的DFT分别为(X[k],W[k]),假设它们的有值区间为(0 leq n leq N-1​),那么它们进行圆周卷积的DFT为:

    [egin{aligned} x[n]otimes w[n]&=sum_{m=0}^{N-1}x[m]w[<n-m>_N] \ &xrightarrow{DFT}sum_{n=0}^{N-1}sum_{m=0}^{N-1}x[m]w[<n-m>_N]W_N^{kn} \ &=sum_{m=0}^{N-1}x[m]sum_{n=0}^{N-1}frac{1}{N}sum_{r=0}^{N-1}W[r]W_N^{r(n-m)}W_N^{kn} \ &=sum_{m=0}^{N-1}x[m]sum_{r=0}^{N-1}W[r]W_N^{km}(frac{1}{N}sum_{n=0}^{N-1}W_N^{k-r}) \ &=sum_{m=0}^{N-1}x[m]W_N^{km}W[k] \ &=X[k]W[k] end{aligned} ]

    上式中用到了

    [frac{1}{N}sum_{n=0}^{N-1}W_N^{k-r}= egin{cases} 1, k -r = lN , \, l=0,1,...\ 0, 其它 end{cases} ]

    Parseval定理

    [egin{aligned} sum_{n=0}^{N-1}x[n]y^{*}[n]&=sum_{n=0}^{N-1}x[n](frac{1}{N}sum_{k=0}^{N-1}Y[k]W_N^{-kn})^{*}\ &=frac{1}{N}sum_{k=0}^{N-1}Y^{*}[k]sum_{n=0}^{N-1}x[n]W_N^{kn}\ &=frac{1}{N}sum_{k=0}^{N-1}X[k]Y^{*}[k] end{aligned} ]

    特别的,当(x[n]=y[n]​)

    [sum_{n=0}^{N-1}vert x[n]vert^2=frac{1}{N}sum_{k=0}^{N-1}vert X[k]vert^2 ]

  • 相关阅读:
    curl常用选项
    cuda
    mysql 备份文件.xbstream 恢复到本地
    firewall 常用命令(update...)
    ownCloud 研究笔记(update...)
    V3
    English trip EM3-LP-3A ROOMMATES Teacher:Corrine
    V3
    English trip EM3-LP-5A Shopping Teacher:Taylor
    新概念 Lesson 11 Which book?
  • 原文地址:https://www.cnblogs.com/LastKnight/p/10958058.html
Copyright © 2011-2022 走看看