zoukankan      html  css  js  c++  java
  • JZ-C-43

    剑指offer第四十三题:n个骰子的点数:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s,求所有可能的s的概率

      1 //============================================================================
      2 // Name        : JZ-C-43.cpp
      3 // Author      : Laughing_Lz
      4 // Version     :
      5 // Copyright   : All Right Reserved
      6 // Description : n个骰子的点数:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s,求所有可能的s的概率
      7 //============================================================================
      8 
      9 #include <iostream>
     10 #include <math.h>
     11 #include <stdio.h>
     12 using namespace std;
     13 
     14 int g_maxValue = 6; //骰子面数
     15 
     16 // ====================方法一====================
     17 void Probability(int number, int* pProbabilities);
     18 void Probability(int original, int current, int sum, int* pProbabilities);
     19 /**
     20  * 递归:许多计算时重复的,当number变大时,性能很低
     21  */
     22 void PrintProbability_Solution1(int number) {
     23     if (number < 1)
     24         return;
     25 
     26     int maxSum = number * g_maxValue;
     27     int* pProbabilities = new int[maxSum - number + 1];
     28     for (int i = number; i <= maxSum; ++i)
     29         pProbabilities[i - number] = 0;
     30 
     31     Probability(number, pProbabilities);
     32 
     33     int total = pow((double) g_maxValue, number);//pow(x,y)函数:表示x^y
     34     for (int i = number; i <= maxSum; ++i) {
     35         double ratio = (double) pProbabilities[i - number] / total;
     36         printf("%d: %e
    ", i, ratio);
     37     }
     38 
     39     delete[] pProbabilities;
     40 }
     41 
     42 void Probability(int number, int* pProbabilities) {
     43     for (int i = 1; i <= g_maxValue; ++i)
     44         Probability(number, number, i, pProbabilities);
     45 }
     46 
     47 void Probability(int original, int current, int sum, int* pProbabilities) {
     48     if (current == 1) {
     49         pProbabilities[sum - original]++;
     50     } else {
     51         for (int i = 1; i <= g_maxValue; ++i) {
     52             Probability(original, current - 1, i + sum, pProbabilities);
     53         }
     54     }
     55 }
     56 
     57 // ====================方法二====================
     58 /**
     59  * 循环:利用两个数组交替存储两次循环后各值可能出现的次数。时间性能好
     60  */
     61 void PrintProbability_Solution2(int number) {
     62     if (number < 1)
     63         return;
     64 
     65     int* pProbabilities[2];
     66     pProbabilities[0] = new int[g_maxValue * number + 1];
     67     pProbabilities[1] = new int[g_maxValue * number + 1];
     68     for (int i = 0; i < g_maxValue * number + 1; ++i) {
     69         pProbabilities[0][i] = 0;
     70         pProbabilities[1][i] = 0;
     71     }
     72 
     73     int flag = 0;
     74     for (int i = 1; i <= g_maxValue; ++i)
     75         pProbabilities[flag][i] = 1;//第一次,先将各值可能出现的次数赋为1
     76 
     77     for (int k = 2; k <= number; ++k) {//number 骰子数
     78         for (int i = 0; i < k; ++i)
     79             pProbabilities[1 - flag][i] = 0;
     80 
     81         for (int i = k; i <= g_maxValue * k; ++i) {
     82             pProbabilities[1 - flag][i] = 0;//先重新赋值为0 ★★(结合flag交替使用得知:这里每一轮都会重复计算上一轮得过的次数,因为每次都是从值为0开始。所以仍有重复计算的问题)
     83             for (int j = 1; j <= i && j <= g_maxValue; ++j)
     84                 pProbabilities[1 - flag][i] += pProbabilities[flag][i - j];//★★★这里表示f(n)=f(n-1)+f(n-2)+f(n-3)+f(n-4)+f(n-5)+f(n-6)
     85         }
     86 
     87         flag = 1 - flag;//交替使用两个数组
     88     }
     89 
     90     double total = pow((double) g_maxValue, number);
     91     for (int i = number; i <= g_maxValue * number; ++i) {
     92         double ratio = (double) pProbabilities[flag][i] / total;
     93         printf("%d: %e
    ", i, ratio);
     94     }
     95 
     96     delete[] pProbabilities[0];
     97     delete[] pProbabilities[1];
     98 }
     99 
    100 // ====================测试代码====================
    101 void Test(int n) {
    102     printf("Test for %d begins:
    ", n);
    103 
    104     printf("Test for solution1
    ");
    105     PrintProbability_Solution1(n);
    106 
    107     printf("Test for solution2
    ");
    108     PrintProbability_Solution2(n);
    109 
    110     printf("
    ");
    111 }
    112 
    113 int main(int argc, char** argv) {
    114     Test(1);
    115     Test(2);
    116     Test(3);
    117     Test(4);
    118     Test(11);
    119     Test(0);
    120 
    121     return 0;
    122 }
  • 相关阅读:
    Orderly Class
    POJ2513 【并查集+欧拉路径+trie树】
    POJ2195 Going Home【KM最小匹配】
    洛谷P2604 最大流+最小费用最大流
    小数转分数
    威尔逊定理
    luogu P6564 [POI2007] 堆积木KLO 树状数组+dp
    Codeforces Round #644 (Div. 3) H——Binary Median 二分
    luogu P4933 大师 线性dp
    Codeforces Round #643 (Div. 2) D——Game With Array
  • 原文地址:https://www.cnblogs.com/Laughing-Lz/p/5615271.html
Copyright © 2011-2022 走看看