zoukankan      html  css  js  c++  java
  • Remainders Game

    Remainders Game

    Problem:

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color i before drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

    Input:

    The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

    Then, k lines will follow. The i-th line will contain c i, the number of balls of the i-th color (1 ≤ c i ≤ 1000).

    The total number of balls doesn't exceed 1000.

    Output:

    A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

    Examples:

    input

    3
    2
    2
    1
    

    output

    3
    

    input

    4
    1
    2
    3
    4
    

    output

    1680
    

    Note

    In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

    1 2 1 2 3
    1 1 2 2 3
    2 1 1 2 3
    

    Solution:

    组合数学。题意是求保证(i)种颜色气球的最后一个之后必须是(i+1)种颜色的气球的情况下的排列数。对于每一种颜色计算当前所剩的总位数(sum),当前颜色的个数(a)(C[sum-1][a-1]),将所有情况相乘即可。

    预先处理组合数,递推方法计算:

    [c[i][j]=c[i-1][j]+c[i-1][j-1] \(杨辉三角求法) ]

    Code:

    #include <bits/stdc++.h>
    #define lowbit(x) (x&(-x))
    #define CSE(x,y) memset(x,y,sizeof(x))
    #define INF 0x3f3f3f3f
    #define Abs(x) (x>=0?x:(-x))
    #define FAST ios::sync_with_stdio(false);cin.tie(0);
    using namespace std;
    
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef pair<ll, ll> pll;
    
    const int maxn = 1111;
    const ll mod = 1000000007;
    ll c[maxn][maxn];
    int a[maxn];
    
    void Ini()
    {
    	c[0][0] = 1; c[1][0] = 1; c[1][1] = 1;
    	for (int i = 2; i < maxn; i++) {
    		c[i][0] = c[i][i] = 1;
    		for (int j = 1; j < maxn; j++) {
    			c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
    			c[i][j] %= mod;
    		}
    	}
    	return;
    }
    
    int main()
    {
    	FAST;
    	Ini();
    	int k, sum = 0;
    	cin >> k;
    	for (int i = 1; i <= k; i++) {
    		cin >> a[i];
    		sum += a[i];
    	}
    	ll ans = 1;
    	for (int i = k; i >= 1; i--) {
    		ans *= c[sum - 1][a[i] - 1];
    		ans %= mod;
    		sum -= a[i];
    	}
    	cout << ans << endl;
    	return 0;
    }
    
  • 相关阅读:
    遥远的国度(D12 树链剖分)
    Codechef DGCD Dynamic GCD(D12 树上GCD)
    html总结
    数据库大总结
    html笔记
    Linux常用快捷键
    进程
    多进程
    进程介绍
    网络并发
  • 原文地址:https://www.cnblogs.com/LeafLove/p/13331496.html
Copyright © 2011-2022 走看看