zoukankan      html  css  js  c++  java
  • STL标准库-容器-rb_tree

    技术在于交流、沟通,本文为博主原创文章转载请注明出处并保持作品的完整性

    红黑树,关联式容器底层实现(map set),在使用中基本运用不到,但是还是想了解一下他的运作方式

    Red_Black tree是平衡二分搜寻树(balanced binary search tree),它是高度平衡的二叉树,这样有利于search和insert.

    红黑树提供遍历,如果如果按正常规则(++iter)遍历,便能获得排序状态

     

    如上图,你会发现返回迭代器头的begin()函数指向的是"5"这个点.end()记录着最大点"15",它永远先走左边后走右边.

    如果你遍历上面的红黑树就会得到 5,6,7,8,10,11,12,13,15

    但是我们不应该使用红黑树的迭代器改变其元素,如果改变就会破坏原树的结构,但是编程的层面没有禁止(是可以改,但是我们不应该改).

    因为rb_tree是为了实现set和map,而map允许元素data的改变,但是map的key不能够改变.

    rb_tree提供两种insertion操作:insert_unique()[插入的key是第一无二的,否则插入失败]. insert_equal()[允许key重复] .

    先说一下红黑数的基本性质

    红黑树的性质:

    a.每个节点或是红的,或是黑的

    b.根节点是黑色的

    c.每个叶节点(NULL)是黑色的

    d.如果一个节点是红色的,则它的两个子节点都是黑色的

    e.对每个节点,从该节点到其所有后代叶节点的简单路径上,均含有相同数目的黑色节点


    Source Code

    介绍rb_tree的部分源码

    一 数据类

    先看红黑树的数据类 _Rb_tree_node_base

        enum _Rb_tree_color { _S_red = false, _S_black = true };//红黑树的颜色 红色0 黑色1
        
        struct _Rb_tree_node_base
        {
            typedef _Rb_tree_node_base* _Base_ptr; //节点指针
            typedef const _Rb_tree_node_base* _Const_Base_ptr;//const节点指针
            
            _Rb_tree_color    _M_color;//颜色
            _Base_ptr        _M_parent;//父节点
            _Base_ptr        _M_left;//左节点
            _Base_ptr        _M_right;//右节点
            
            static _Base_ptr//最小节点,即最左节点
            _S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
            {
                while (__x->_M_left != 0) __x = __x->_M_left;//只要左节点不为空就一直向左走,取得最小节点
                return __x;
            }
            
            static _Const_Base_ptr
            _S_minimum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
            {
                while (__x->_M_left != 0) __x = __x->_M_left;
                return __x;
            }
            
            static _Base_ptr//最大节点,即最右节点
            _S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
            {
                while (__x->_M_right != 0) __x = __x->_M_right;
                return __x;
            }
            
            static _Const_Base_ptr
            _S_maximum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
            {
                while (__x->_M_right != 0) __x = __x->_M_right;
                return __x;
            }
        };

    子类_Rb_tree_node

        template<typename _Val>//红黑树的节点结构
        struct _Rb_tree_node : public _Rb_tree_node_base
        {
            typedef _Rb_tree_node<_Val>* _Link_type;//节点指针 指向数据节点
            
    #if __cplusplus < 201103L
            _Val _M_value_field;//数据类型
            
            _Val*
            _M_valptr()
            { return std::__addressof(_M_value_field); } 
            
            const _Val*
            _M_valptr() const
            { return std::__addressof(_M_value_field); }
    #else
            __gnu_cxx::__aligned_buffer<_Val> _M_storage;//对齐处理后数据
            
            _Val*
            _M_valptr() //返回对应数据的指针
            { return _M_storage._M_ptr(); }
            
            const _Val*
            _M_valptr() const
            { return _M_storage._M_ptr(); }
    #endif
        };

    std::_addressof()的实现在 move.h中找到其实现
    用于取变量和函数的内存地址 
      template<typename _Tp>
        inline _Tp*
        __addressof(_Tp& __r) _GLIBCXX_NOEXCEPT
        {
          return reinterpret_cast<_Tp*>
        (&const_cast<char&>(reinterpret_cast<const volatile char&>(__r)));
        }

    volatitle是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素更改.

    比如:操作系统、硬件或者其它线程等。遇到这个关键字声明的变量,编译器对访问该变量的代码就不再进行优化,从而可以提供对特殊地址的稳定访问。

    声明时语法:int volatile vInt; 当要求使用 volatile 声明的变量的值的时候,系统总是重新从它所在的内存读取数据,即使它前面的指令刚刚从该处读取过数据。而且读取的数据立刻被保存


    二 迭代器 _Rb_tree_iterator

    template<typename _Tp>
        struct _Rb_tree_iterator
        {
            typedef _Tp  value_type;
            typedef _Tp& reference;
            typedef _Tp* pointer;
            
            typedef bidirectional_iterator_tag iterator_category; //迭代器类型
            typedef ptrdiff_t                  difference_type; //两个迭代器间距离
            
            typedef _Rb_tree_iterator<_Tp>        _Self;
            typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;//节点指针
            typedef _Rb_tree_node<_Tp>*           _Link_type;//节点指针
            //ctor
            _Rb_tree_iterator() _GLIBCXX_NOEXCEPT
            : _M_node() { }
            
            explicit
            _Rb_tree_iterator(_Link_type __x) _GLIBCXX_NOEXCEPT
            : _M_node(__x) { }
            
            reference
            operator*() const _GLIBCXX_NOEXCEPT
            { return *static_cast<_Link_type>(_M_node)->_M_valptr(); }
            //操作符重载返回节点指针
            pointer
            operator->() const _GLIBCXX_NOEXCEPT
            { return static_cast<_Link_type> (_M_node)->_M_valptr(); }
            
            _Self&
            operator++() _GLIBCXX_NOEXCEPT
            {
                _M_node = _Rb_tree_increment(_M_node);//这个函数的实现在4.9中没有找到 用一下其他版本的 其实现原理基本相似
                return *this;
            }
            
            _Self
            operator++(int) _GLIBCXX_NOEXCEPT
            {
                _Self __tmp = *this;
                _M_node = _Rb_tree_increment(_M_node);//++操作
                return __tmp;
            }
            
            _Self&
            operator--() _GLIBCXX_NOEXCEPT//--也没找到 
            {
                _M_node = _Rb_tree_decrement(_M_node);
                return *this;
            }
            
            _Self
            operator--(int) _GLIBCXX_NOEXCEPT
            {
                _Self __tmp = *this;
                _M_node = _Rb_tree_decrement(_M_node);
                return __tmp;
            }
            
            bool
            operator==(const _Self& __x) const _GLIBCXX_NOEXCEPT
            { return _M_node == __x._M_node; }
            
            bool
            operator!=(const _Self& __x) const _GLIBCXX_NOEXCEPT
            { return _M_node != __x._M_node; }
            
            _Base_ptr _M_node;
        };

    operator++

    //RB-Tree的后继点
       void _M_increment()
      {
        //the right subtree of node x is not empty
          //存在右子树,则找出右子树的最小节点
        if (_M_node->_M_right != 0) {//如果有右子树
          _M_node = _M_node->_M_right;//向右边走
          while (_M_node->_M_left != 0)//往右子树中的左边一直走到底
            _M_node = _M_node->_M_left;//最左节点就是后继结点
        }
        //the right subtree of node x is empty,and the node of x has a successor node y 
        //没有右子树,但是RB-Tree中节点node存在后继结点
        else {
          _Base_ptr __y = _M_node->_M_parent;//沿其父节点向上查找
          while (_M_node == __y->_M_right) { //若节点是其父节点的右孩子,则向上查找,
            _M_node = __y;                    //一直向上查找,直到“某节点不是其父节点的右孩子”为止
            __y = __y->_M_parent;
          }
    
          if (_M_node->_M_right != __y)//若此时的右子节点不等于此时的父节点
            _M_node = __y;//此时的父节点即为解答
                            //否则此时的node为解答 
        }
      }

    operator--

    //RB-Tree的前驱节点
      void _M_decrement()
      {
        if (_M_node->_M_color == _S_rb_tree_red &&// 如果是红节点,且
            _M_node->_M_parent->_M_parent == _M_node)// 父节点的父节点等于自己
          _M_node = _M_node->_M_right;             //右子节点即为解答。
        /* 
          以上情况发生于node为header时(亦即node为end()时)。注意,header之右孩子即 
          mostright,指向整棵树的max节点。 
          */ 
        else if (_M_node->_M_left != 0) {//若有左孩子节点。左子树的最大值即为前驱节点
          _Base_ptr __y = _M_node->_M_left;//向左边走,即令y指向左孩子
          while (__y->_M_right != 0)//y存在右孩子,
            __y = __y->_M_right;//一直往右走到底
          _M_node = __y;//最后即为解答
        }
        else {//即非根节点,且没有左孩子节点
          _Base_ptr __y = _M_node->_M_parent;//找出父节点
          while (_M_node == __y->_M_left) {//node节点是其父节点的左孩子
            _M_node = __y;//一直交替上溯
            __y = __y->_M_parent;//直到不为左孩子结点
          }
          _M_node = __y;//此时父节点即为解答
        }
      }
    };

    _Rb_tree_impl

    template<typename _Key, typename _Val, typename _KeyOfValue,
    typename _Compare, typename _Alloc = allocator<_Val> >
    class _Rb_tree
    {
    //先说一下说这五个参数
    /*
    参数1 key key类型
    参数2 val value和key的数据包
    参数3 在数据包中取key得方法
    参数4 key的排序方法
    参数5 分配器
    */
    ... protected: template<typename _Key_compare, bool _Is_pod_comparator = __is_pod(_Key_compare)> struct _Rb_tree_impl : public _Node_allocator { _Key_compare _M_key_compare; _Rb_tree_node_base _M_header; size_type _M_node_count; // Keeps track of size of tree. _Rb_tree_impl() : _Node_allocator(), _M_key_compare(), _M_header(), _M_node_count(0) { _M_initialize(); } _Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a) : _Node_allocator(__a), _M_key_compare(__comp), _M_header(), _M_node_count(0) { _M_initialize(); } #if __cplusplus >= 201103L _Rb_tree_impl(const _Key_compare& __comp, _Node_allocator&& __a) : _Node_allocator(std::move(__a)), _M_key_compare(__comp), _M_header(), _M_node_count(0) { _M_initialize(); } #endif private: void _M_initialize() { this->_M_header._M_color = _S_red; this->_M_header._M_parent = 0; this->_M_header._M_left = &this->_M_header; this->_M_header._M_right = &this->_M_header; } }; _Rb_tree_impl<_Compare> _M_impl; ... }

    4.9的红黑树源码封装的比较严密,导致我没找到一些函数的实现,那么下面的源码分析,我就以我的学习笔记代替了

    // 以下都是全域函式:__rb_tree_rotate_left(), __rb_tree_rotate_right(),  
    // __rb_tree_rebalance(), __rb_tree_rebalance_for_erase()  
      
    //新节点必须为红色节点。如果安插处的父节点为红色,就违反了红黑色规则
    //此时要旋转和改变颜色 
    
    //左旋转
    //节点x为左旋转点
    inline void 
    _Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
    {
      _Rb_tree_node_base* __y = __x->_M_right;//获取左旋转节点x的右孩子y
      __x->_M_right = __y->_M_left;//把y节点的左孩子作为旋转节点x的右孩子
      if (__y->_M_left !=0)
        __y->_M_left->_M_parent = __x;//更新节点y左孩子父节点指针,指向新的父节点x
      __y->_M_parent = __x->_M_parent;//y节点替换x节点的位置
    
      //令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
      if (__x == __root)//若原始位置节点x是根节点
        __root = __y;//则y为新的根节点
      //否则,若x节点是其父节点的左孩子
      else if (__x == __x->_M_parent->_M_left)
        __x->_M_parent->_M_left = __y;//则更新节点y为原始x父节点的左孩子
      else//若x节点是其父节点的右孩子
        __x->_M_parent->_M_right = __y;//则更新节点y为原始x父节点的右孩子
      __y->_M_left = __x;//旋转后旋转节点x作为节点y的左孩子
      __x->_M_parent = __y;//更新x节点的父节点指针
    }
    
    //右旋转
    //节点x为右旋转点
    inline void 
    _Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
    {
      _Rb_tree_node_base* __y = __x->_M_left;//获取右旋转节点x的左孩子y
      __x->_M_left = __y->_M_right;//把y节点的右孩子作为旋转节点x的左孩子
      if (__y->_M_right != 0)
        __y->_M_right->_M_parent = __x;//更新节点y右孩子父节点指针,指向新的父节点x
      __y->_M_parent = __x->_M_parent;//y节点替换x节点的位置
    
      //令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
      if (__x == __root)//若原始位置节点x是根节点
        __root = __y;//则y为新的根节点
      //否则,若x节点是其父节点的右孩子
      else if (__x == __x->_M_parent->_M_right)
        __x->_M_parent->_M_right = __y;//则更新节点y为原始x父节点的右孩子
      else//若x节点是其父节点的左孩子
        __x->_M_parent->_M_left = __y;//则更新节点y为原始x父节点的左孩子
      __y->_M_right = __x;//旋转后旋转节点x作为节点y的右孩子
      __x->_M_parent = __y;//更新x节点的父节点指针
    }
    
    //重新令RB-tree平衡(改变颜色和旋转)
    //参数一为新增节点x,参数二为root节点
    inline void 
    _Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
    {
      __x->_M_color = _S_rb_tree_red;//新插入的节点必须为红色,这样不会违反性质5.
      //若新插入节点不是为RB-Tree的根节点,且其父节点color属性也是红色,即违反了性质4.
      //则进入while循环.
      //此时根据节点x的父节点x->parent是其祖父节点x->parent->parent的左孩子还是右孩子进行讨论,
      //但是左右孩子之间是对称的,所以思想是类似的.
      while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
        //case1:节点x的父节点x->parent是其祖父节点x->parent->parent的左孩子
        if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
            //节点y为x节点的叔叔节点,即是节点x父节点x->parent的兄弟
          _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
          if (__y && __y->_M_color == _S_rb_tree_red) {//情况1:若其叔叔节点y存在,且为红色
              /*
              此时x->parent和y都是红色的,解决办法是将x的父节点x->parent和叔叔结点y都着为黑色,
              而将x的祖父结点x->parent->parent着为红色,
              然后从祖父结点x->parent->parent继续向上判断是否破坏红黑树的性质。
              */
            __x->_M_parent->_M_color = _S_rb_tree_black;//将其父节点x->parent改变成黑色
            __y->_M_color = _S_rb_tree_black;//将其叔叔节点y改变成黑色
            __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//将其祖父节点变成红色
            //把祖父节点作为当前节点,一直上溯,继续判断是否破坏RB-Tree性质.
            __x = __x->_M_parent->_M_parent;
          }
          else {//若无叔叔节点或者其叔叔节点y为黑色
              /*
              情况2:x的叔叔节点y是黑色且x是一个右孩子
              情况3:x的叔叔节点y是黑色且x是一个左孩子
    
             情况2和情况3中y都是黑色的,通过x是parent[x]的左孩子还是右孩子进行区分的。
             情况2中x是右孩子,可以在parent[x]结点将情况2通过左旋转为情况3,使得x变为左孩子。
             无论是间接还是直接的通过情况2进入到情况3,x的叔叔y总是黑色的。
             在情况3中,将parent[x]着为黑色,parent[parent[x]]着为红色,然后从parent[parent[x]]处进行一次右旋转。
             情况2、3修正了对性质4的违反,修正过程不会导致其他的红黑性质被破坏。
              */
            if (__x == __x->_M_parent->_M_right) {//若节点x为其父节点x->parent的右孩子
                //则以其父节点作为旋转节点
                //进行一次左旋转
              __x = __x->_M_parent;
              _Rb_tree_rotate_left(__x, __root);
              //旋转之后,节点x变成其父节点的左孩子
            }
            __x->_M_parent->_M_color = _S_rb_tree_black;//改变其父节点x->parent颜色
            __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//改变其祖父节点x->parent->parent颜色
            _Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);//对其祖父节点进行一次右旋转
          }
        }
        //case2:节点x的父节点x->parent是其祖父节点x->parent->parent的右孩子
        //这种情况是跟上面的情况(父节点为其祖父节点的左孩子)是对称的.
        else {
            //节点y为x节点的叔叔节点,即是节点x父节点x->parent的兄弟
          _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
          if (__y && __y->_M_color == _S_rb_tree_red) {//若叔叔节点存在,且为红色
            __x->_M_parent->_M_color = _S_rb_tree_black;//改变父节点颜色
            __y->_M_color = _S_rb_tree_black;//改变叔叔节点颜色
            __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//改变祖父节点颜色
            __x = __x->_M_parent->_M_parent;//上溯祖父节点,判断是否违背RB-Tree的性质
          }
          else {//若叔叔节点不存在或叔叔节点为黑色
            if (__x == __x->_M_parent->_M_left) {//新节点x为其父节点的左孩子
                //对其父节点进行一次右旋转
              __x = __x->_M_parent;
              _Rb_tree_rotate_right(__x, __root);
            }
            __x->_M_parent->_M_color = _S_rb_tree_black;//改变父节点颜色
            __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//改变祖父节点颜色
            _Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);//进行一次左旋转
          }
        }
      }
      //若新插入节点为根节点,则违反性质2
      //只需将其重新赋值为黑色即可
      __root->_M_color = _S_rb_tree_black;
    }
    
    //删除节点
    inline _Rb_tree_node_base*
    _Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
                                 _Rb_tree_node_base*& __root,
                                 _Rb_tree_node_base*& __leftmost,
                                 _Rb_tree_node_base*& __rightmost)
    {
      _Rb_tree_node_base* __y = __z;
      _Rb_tree_node_base* __x = 0;
      _Rb_tree_node_base* __x_parent = 0;
      if (__y->_M_left == 0)     // __z has at most one non-null child. y == z.
        __x = __y->_M_right;     // __x might be null.
      else
        if (__y->_M_right == 0)  // __z has exactly one non-null child. y == z.
          __x = __y->_M_left;    // __x is not null.
        else {                   // __z has two non-null children.  Set __y to
          __y = __y->_M_right;   //   __z's successor.  __x might be null.
          while (__y->_M_left != 0)
            __y = __y->_M_left;
          __x = __y->_M_right;
        }
      if (__y != __z) {          // relink y in place of z.  y is z's successor
        __z->_M_left->_M_parent = __y; 
        __y->_M_left = __z->_M_left;
        if (__y != __z->_M_right) {
          __x_parent = __y->_M_parent;
          if (__x) __x->_M_parent = __y->_M_parent;
          __y->_M_parent->_M_left = __x;      // __y must be a child of _M_left
          __y->_M_right = __z->_M_right;
          __z->_M_right->_M_parent = __y;
        }
        else
          __x_parent = __y;  
        if (__root == __z)
          __root = __y;
        else if (__z->_M_parent->_M_left == __z)
          __z->_M_parent->_M_left = __y;
        else 
          __z->_M_parent->_M_right = __y;
        __y->_M_parent = __z->_M_parent;
        __STD::swap(__y->_M_color, __z->_M_color);
        __y = __z;
        // __y now points to node to be actually deleted
      }
      else {                        // __y == __z
        __x_parent = __y->_M_parent;
        if (__x) __x->_M_parent = __y->_M_parent;   
        if (__root == __z)
          __root = __x;
        else 
          if (__z->_M_parent->_M_left == __z)
            __z->_M_parent->_M_left = __x;
          else
            __z->_M_parent->_M_right = __x;
        if (__leftmost == __z) 
          if (__z->_M_right == 0)        // __z->_M_left must be null also
            __leftmost = __z->_M_parent;
        // makes __leftmost == _M_header if __z == __root
          else
            __leftmost = _Rb_tree_node_base::_S_minimum(__x);
        if (__rightmost == __z)  
          if (__z->_M_left == 0)         // __z->_M_right must be null also
            __rightmost = __z->_M_parent;  
        // makes __rightmost == _M_header if __z == __root
          else                      // __x == __z->_M_left
            __rightmost = _Rb_tree_node_base::_S_maximum(__x);
      }
      if (__y->_M_color != _S_rb_tree_red) { 
        while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
          if (__x == __x_parent->_M_left) {
            _Rb_tree_node_base* __w = __x_parent->_M_right;
            if (__w->_M_color == _S_rb_tree_red) {
              __w->_M_color = _S_rb_tree_black;
              __x_parent->_M_color = _S_rb_tree_red;
              _Rb_tree_rotate_left(__x_parent, __root);
              __w = __x_parent->_M_right;
            }
            if ((__w->_M_left == 0 || 
                 __w->_M_left->_M_color == _S_rb_tree_black) &&
                (__w->_M_right == 0 || 
                 __w->_M_right->_M_color == _S_rb_tree_black)) {
              __w->_M_color = _S_rb_tree_red;
              __x = __x_parent;
              __x_parent = __x_parent->_M_parent;
            } else {
              if (__w->_M_right == 0 || 
                  __w->_M_right->_M_color == _S_rb_tree_black) {
                if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
                __w->_M_color = _S_rb_tree_red;
                _Rb_tree_rotate_right(__w, __root);
                __w = __x_parent->_M_right;
              }
              __w->_M_color = __x_parent->_M_color;
              __x_parent->_M_color = _S_rb_tree_black;
              if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
              _Rb_tree_rotate_left(__x_parent, __root);
              break;
            }
          } else {                  // same as above, with _M_right <-> _M_left.
            _Rb_tree_node_base* __w = __x_parent->_M_left;
            if (__w->_M_color == _S_rb_tree_red) {
              __w->_M_color = _S_rb_tree_black;
              __x_parent->_M_color = _S_rb_tree_red;
              _Rb_tree_rotate_right(__x_parent, __root);
              __w = __x_parent->_M_left;
            }
            if ((__w->_M_right == 0 || 
                 __w->_M_right->_M_color == _S_rb_tree_black) &&
                (__w->_M_left == 0 || 
                 __w->_M_left->_M_color == _S_rb_tree_black)) {
              __w->_M_color = _S_rb_tree_red;
              __x = __x_parent;
              __x_parent = __x_parent->_M_parent;
            } else {
              if (__w->_M_left == 0 || 
                  __w->_M_left->_M_color == _S_rb_tree_black) {
                if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
                __w->_M_color = _S_rb_tree_red;
                _Rb_tree_rotate_left(__w, __root);
                __w = __x_parent->_M_left;
              }
              __w->_M_color = __x_parent->_M_color;
              __x_parent->_M_color = _S_rb_tree_black;
              if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
              _Rb_tree_rotate_right(__x_parent, __root);
              break;
            }
          }
        if (__x) __x->_M_color = _S_rb_tree_black;
      }
      return __y;
    }
    
    // Base class to encapsulate the differences between old SGI-style
    // allocators and standard-conforming allocators.  In order to avoid
    // having an empty base class, we arbitrarily move one of rb_tree's
    // data members into the base class.
    
    //以下是对内存分配的管理
    #ifdef __STL_USE_STD_ALLOCATORS
    
    // _Base for general standard-conforming allocators.
    template <class _Tp, class _Alloc, bool _S_instanceless>
    class _Rb_tree_alloc_base {
    public:
      typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
      allocator_type get_allocator() const { return _M_node_allocator; }//空间配置器的类型
    
      _Rb_tree_alloc_base(const allocator_type& __a)
        : _M_node_allocator(__a), _M_header(0) {}
    
    protected:
      typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
               _M_node_allocator;
      _Rb_tree_node<_Tp>* _M_header;//定义头指针,指向Rb_tree的根节点
    
      _Rb_tree_node<_Tp>* _M_get_node() //分配一个节点空间
        { return _M_node_allocator.allocate(1); }
      void _M_put_node(_Rb_tree_node<_Tp>* __p) //释放一个节点空间
        { _M_node_allocator.deallocate(__p, 1); }
    };
    
    // Specialization for instanceless allocators.
    template <class _Tp, class _Alloc>
    class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
    public:
      typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
      allocator_type get_allocator() const { return allocator_type(); }
    
      _Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
    
    protected:
      _Rb_tree_node<_Tp>* _M_header;
    
      typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
              _Alloc_type;
    
      _Rb_tree_node<_Tp>* _M_get_node()
        { return _Alloc_type::allocate(1); }
      void _M_put_node(_Rb_tree_node<_Tp>* __p)
        { _Alloc_type::deallocate(__p, 1); }
    };
    
    //RB-Tree基本结构,即基类,继承_Rb_tree_alloc_base
    template <class _Tp, class _Alloc>
    struct _Rb_tree_base
      : public _Rb_tree_alloc_base<_Tp, _Alloc,
                                   _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
    {
      typedef _Rb_tree_alloc_base<_Tp, _Alloc,
                                  _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
              _Base;
      typedef typename _Base::allocator_type allocator_type;
    
      _Rb_tree_base(const allocator_type& __a) 
        : _Base(__a) { _M_header = _M_get_node(); }
      ~_Rb_tree_base() { _M_put_node(_M_header); }
    
    };
    
    #else /* __STL_USE_STD_ALLOCATORS */
    
    //RB-Tree基本结构,即基类,没有继承_Rb_tree_alloc_base
    template <class _Tp, class _Alloc>
    struct _Rb_tree_base
    {
      typedef _Alloc allocator_type;
      allocator_type get_allocator() const { return allocator_type(); }
    
      _Rb_tree_base(const allocator_type&) 
        : _M_header(0) { _M_header = _M_get_node(); }
      ~_Rb_tree_base() { _M_put_node(_M_header); }
    
    protected:
      _Rb_tree_node<_Tp>* _M_header;//定义头指针节点,指向根节点
    
      typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type;
    
      _Rb_tree_node<_Tp>* _M_get_node()
        { return _Alloc_type::allocate(1); }
      void _M_put_node(_Rb_tree_node<_Tp>* __p)
        { _Alloc_type::deallocate(__p, 1); }
    };
    
    #endif /* __STL_USE_STD_ALLOCATORS */
    
    //RB-Tree类的定义,继承基类_Rb_tree_base
    template <class _Key, class _Value, class _KeyOfValue, class _Compare,
              class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
    class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
      typedef _Rb_tree_base<_Value, _Alloc> _Base;
    protected:
      typedef _Rb_tree_node_base* _Base_ptr;
      typedef _Rb_tree_node<_Value> _Rb_tree_node;
      typedef _Rb_tree_Color_type _Color_type;
    public:
      typedef _Key key_type;
      typedef _Value value_type;
      typedef value_type* pointer;
      typedef const value_type* const_pointer;
      typedef value_type& reference;
      typedef const value_type& const_reference;
      typedef _Rb_tree_node* _Link_type;
      typedef size_t size_type;
      typedef ptrdiff_t difference_type;
    
      typedef typename _Base::allocator_type allocator_type;
      allocator_type get_allocator() const { return _Base::get_allocator(); }
    
    protected:
    #ifdef __STL_USE_NAMESPACES
      using _Base::_M_get_node;
      using _Base::_M_put_node;
      using _Base::_M_header;//这里是指向根节点的节点指针
    #endif /* __STL_USE_NAMESPACES */
    
    protected:
    
    //创建节点并对其初始化为x  
    _Link_type _M_create_node(const value_type& __x)
      {
        _Link_type __tmp = _M_get_node();//分配一个节点空间
        __STL_TRY {
          construct(&__tmp->_M_value_field, __x);//构造对象
        }
        __STL_UNWIND(_M_put_node(__tmp));
        return __tmp;
      }
    
    //复制节点的值和颜色
      _Link_type _M_clone_node(_Link_type __x)
      {
        _Link_type __tmp = _M_create_node(__x->_M_value_field);
        __tmp->_M_color = __x->_M_color;
        __tmp->_M_left = 0;
        __tmp->_M_right = 0;
        return __tmp;
      }
    
      //释放节点
      void destroy_node(_Link_type __p)
      {
        destroy(&__p->_M_value_field);//析构对象
        _M_put_node(__p);//释放节点空间
      }
    
    protected:
      size_type _M_node_count; // keeps track of size of tree
      _Compare _M_key_compare;    //节点键值比较准则
    
      //下面三个函数是用来获取header的成员
      _Link_type& _M_root() const 
        { return (_Link_type&) _M_header->_M_parent; }
      _Link_type& _M_leftmost() const 
        { return (_Link_type&) _M_header->_M_left; }
      _Link_type& _M_rightmost() const 
        { return (_Link_type&) _M_header->_M_right; }
    
      //下面六个函数获取节点x的成员
      static _Link_type& _S_left(_Link_type __x)
        { return (_Link_type&)(__x->_M_left); }
      static _Link_type& _S_right(_Link_type __x)
        { return (_Link_type&)(__x->_M_right); }
      static _Link_type& _S_parent(_Link_type __x)
        { return (_Link_type&)(__x->_M_parent); }
      static reference _S_value(_Link_type __x)
        { return __x->_M_value_field; }
      static const _Key& _S_key(_Link_type __x)
        { return _KeyOfValue()(_S_value(__x)); }
      static _Color_type& _S_color(_Link_type __x)
        { return (_Color_type&)(__x->_M_color); }
    
      //跟上面六个函数功能相同,不同的是参数类型不同,一个是基类指针,一个是派生类指针  
      static _Link_type& _S_left(_Base_ptr __x)
        { return (_Link_type&)(__x->_M_left); }
      static _Link_type& _S_right(_Base_ptr __x)
        { return (_Link_type&)(__x->_M_right); }
      static _Link_type& _S_parent(_Base_ptr __x)
        { return (_Link_type&)(__x->_M_parent); }
      static reference _S_value(_Base_ptr __x)
        { return ((_Link_type)__x)->_M_value_field; }
      static const _Key& _S_key(_Base_ptr __x)
        { return _KeyOfValue()(_S_value(_Link_type(__x)));} 
      static _Color_type& _S_color(_Base_ptr __x)
        { return (_Color_type&)(_Link_type(__x)->_M_color); }
    
      //RB-Tree的极小值
      static _Link_type _S_minimum(_Link_type __x) 
        { return (_Link_type)  _Rb_tree_node_base::_S_minimum(__x); }
    
       //RB-Tree的极大值
      static _Link_type _S_maximum(_Link_type __x)
        { return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
    
    public:
        //迭代器
      typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
      typedef _Rb_tree_iterator<value_type, const_reference, const_pointer> 
              const_iterator;
    
    #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
      typedef reverse_iterator<const_iterator> const_reverse_iterator;
      typedef reverse_iterator<iterator> reverse_iterator;
    #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
      typedef reverse_bidirectional_iterator<iterator, value_type, reference,
                                             difference_type>
              reverse_iterator; 
      typedef reverse_bidirectional_iterator<const_iterator, value_type,
                                             const_reference, difference_type>
              const_reverse_iterator;
    #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ 
    
    private:
        //类的私有成员函数,在后面定义
      iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
      _Link_type _M_copy(_Link_type __x, _Link_type __p);
      void _M_erase(_Link_type __x);
    
    public:
                                    // allocation/deallocation
      _Rb_tree()
        : _Base(allocator_type()), _M_node_count(0), _M_key_compare()
        { _M_empty_initialize(); }
    
      _Rb_tree(const _Compare& __comp)
        : _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp) 
        { _M_empty_initialize(); }
    
      _Rb_tree(const _Compare& __comp, const allocator_type& __a)
        : _Base(__a), _M_node_count(0), _M_key_compare(__comp) 
        { _M_empty_initialize(); }
    
      _Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x) 
        : _Base(__x.get_allocator()),
          _M_node_count(0), _M_key_compare(__x._M_key_compare)
      { 
        if (__x._M_root() == 0)
          _M_empty_initialize();
        else {
          _S_color(_M_header) = _S_rb_tree_red;
          _M_root() = _M_copy(__x._M_root(), _M_header);
          _M_leftmost() = _S_minimum(_M_root());
          _M_rightmost() = _S_maximum(_M_root());
        }
        _M_node_count = __x._M_node_count;
      }
      ~_Rb_tree() { clear(); }
      _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& 
      operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);
    
    private:
        //初始化header
      void _M_empty_initialize() {
        _S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from 
                                              // __root, in iterator.operator++
        _M_root() = 0;
        _M_leftmost() = _M_header;
        _M_rightmost() = _M_header;
      }
    
    public:    
                                    // accessors:
      _Compare key_comp() const { return _M_key_compare; }
      iterator begin() { return _M_leftmost(); }//RB-Tree的起始迭代器为最小节点
      const_iterator begin() const { return _M_leftmost(); }
      iterator end() { return _M_header; }//RB-Tree的结束迭代器为header
      const_iterator end() const { return _M_header; }
      reverse_iterator rbegin() { return reverse_iterator(end()); }
      const_reverse_iterator rbegin() const { 
        return const_reverse_iterator(end()); 
      }
      reverse_iterator rend() { return reverse_iterator(begin()); }
      const_reverse_iterator rend() const { 
        return const_reverse_iterator(begin());
      } 
      //RB-Tree是否为空
      bool empty() const { return _M_node_count == 0; }
      //RB-Tree节点数
      size_type size() const { return _M_node_count; }
      size_type max_size() const { return size_type(-1); }
    
      //交换两棵RB-Tree的内容
      //RB-tree只有三个表现成员,所以两棵RB-Tree交换内容时,只需互换这3个成员 
      void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
        __STD::swap(_M_header, __t._M_header);
        __STD::swap(_M_node_count, __t._M_node_count);
        __STD::swap(_M_key_compare, __t._M_key_compare);
      }
        
    public:
                                    // insert/erase
        //插入节点,但是节点值必须唯一
      pair<iterator,bool> insert_unique(const value_type& __x);
      //插入节点,节点值可以与当前RB-Tree节点值相等
      iterator insert_equal(const value_type& __x);
    
      //在指定位置插入节点
      iterator insert_unique(iterator __position, const value_type& __x);
      iterator insert_equal(iterator __position, const value_type& __x);
    
    #ifdef __STL_MEMBER_TEMPLATES  
      template <class _InputIterator>
      void insert_unique(_InputIterator __first, _InputIterator __last);
      template <class _InputIterator>
      void insert_equal(_InputIterator __first, _InputIterator __last);
    #else /* __STL_MEMBER_TEMPLATES */
      void insert_unique(const_iterator __first, const_iterator __last);
      void insert_unique(const value_type* __first, const value_type* __last);
      void insert_equal(const_iterator __first, const_iterator __last);
      void insert_equal(const value_type* __first, const value_type* __last);
    #endif /* __STL_MEMBER_TEMPLATES */
    
      //删除节点
      void erase(iterator __position);
      size_type erase(const key_type& __x);
      void erase(iterator __first, iterator __last);
      void erase(const key_type* __first, const key_type* __last);
      //清除RB-Tree
      void clear() {
        if (_M_node_count != 0) {
          _M_erase(_M_root());
          _M_leftmost() = _M_header;
          _M_root() = 0;
          _M_rightmost() = _M_header;
          _M_node_count = 0;
        }
      }      
    
    public:
                                    // set operations:
      iterator find(const key_type& __x);
      const_iterator find(const key_type& __x) const;
      size_type count(const key_type& __x) const;
      iterator lower_bound(const key_type& __x);
      const_iterator lower_bound(const key_type& __x) const;
      iterator upper_bound(const key_type& __x);
      const_iterator upper_bound(const key_type& __x) const;
      pair<iterator,iterator> equal_range(const key_type& __x);
      pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;
    
    public:
                                    // Debugging.
      bool __rb_verify() const;
    };
    
    //以下是操作符重载
    //重载operator==运算符,使用的是STL泛型算法
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline bool 
    operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
               const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
    {
      return __x.size() == __y.size() &&
          //STL的算法equal(__x.begin(), __x.end(), __y.begin());
             equal(__x.begin(), __x.end(), __y.begin());
    }
     //重载operator<运算符,使用的是STL泛型算法
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline bool 
    operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
              const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
    {
      return lexicographical_compare(__x.begin(), __x.end(), 
                                     __y.begin(), __y.end());
    }
    
    #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline bool 
    operator!=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
               const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
      return !(__x == __y);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline bool 
    operator>(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
              const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
      return __y < __x;
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline bool 
    operator<=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
               const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
      return !(__y < __x);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline bool 
    operator>=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
               const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
      return !(__x < __y);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline void 
    swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x, 
         _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
    {
      __x.swap(__y);
    }
    
    #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
    {
      if (this != &__x) {
                                    // Note that _Key may be a constant type.
        clear();
        _M_node_count = 0;
        _M_key_compare = __x._M_key_compare;        
        if (__x._M_root() == 0) {
          _M_root() = 0;
          _M_leftmost() = _M_header;
          _M_rightmost() = _M_header;
        }
        else {
          _M_root() = _M_copy(__x._M_root(), _M_header);
          _M_leftmost() = _S_minimum(_M_root());
          _M_rightmost() = _S_maximum(_M_root());
          _M_node_count = __x._M_node_count;
        }
      }
      return *this;
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
    {//参数x_为新值插入点,参数y_为插入点之父节点,参数v 为新值 
      _Link_type __x = (_Link_type) __x_;
      _Link_type __y = (_Link_type) __y_;
      _Link_type __z;
    
      if (__y == _M_header || __x != 0 || 
          _M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
        __z = _M_create_node(__v);//创建值为v的节点z
        _S_left(__y) = __z;               // also makes _M_leftmost() = __z 
                                          //    when __y == _M_header
        if (__y == _M_header) {
          _M_root() = __z;
          _M_rightmost() = __z;
        }
        else if (__y == _M_leftmost())//若y为最左节点
          _M_leftmost() = __z;   // maintain _M_leftmost() pointing to min node
      }
      else {
        __z = _M_create_node(__v);
        _S_right(__y) = __z;
        if (__y == _M_rightmost())
          _M_rightmost() = __z;  // maintain _M_rightmost() pointing to max node
      }
      _S_parent(__z) = __y;//设定新节点的父节点
      _S_left(__z) = 0;//设定新节点的左孩子
      _S_right(__z) = 0;//设定新节点的右孩子
      _Rb_tree_rebalance(__z, _M_header->_M_parent);//调整RB-Tree使其满足性质
      ++_M_node_count;//节点数增加1
      return iterator(__z);//返回新节点迭代器
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::insert_equal(const _Value& __v)
    {
      _Link_type __y = _M_header;
      _Link_type __x = _M_root();//从根节点开始
      while (__x != 0) {//从根节点开始,往下寻找合适插入点
        __y = __x;
        //判断新插入节点值与当前节点x值的大小,以便判断往x的左边走还是往右边走
        __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? 
                _S_left(__x) : _S_right(__x);
      }
      return _M_insert(__x, __y, __v);
    }
    
    // 安插新值;节点键值不允许重复,若重复则安插无效。  
    // 注意,传回值是个pair,第一元素是个 RB-tree 迭代器,指向新增节点,  
    // 第二元素表示安插成功与否。
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator, 
         bool>
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::insert_unique(const _Value& __v)
    {
      _Link_type __y = _M_header;
      _Link_type __x = _M_root();//从根节点开始
      bool __comp = true;
      while (__x != 0) {//从根节点开始,往下寻找合适插入点
        __y = __x;
        //判断新插入节点值与当前节点x值的大小,以便判断往x的左边走还是往右边走
        __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
        __x = __comp ? _S_left(__x) : _S_right(__x);
      }
      //离开while循环之后,y所指即为安插点的父节点,x必为叶子节点
      iterator __j = iterator(__y);//令迭代器j指向插入节点之父节点y   
      if (__comp)//若为真
        if (__j == begin())//若插入点之父节点为最左节点     
          return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
        else//否则(插入点之父节点不在最左节点)
          --__j;//调整j
       // 小于新值(表示遇「小」,将安插于右侧)  
      if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
        return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
      //若运行到这里,表示键值有重复,不应该插入 
      return pair<iterator,bool>(__j, false);
    }
    
    template <class _Key, class _Val, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator 
    _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
      ::insert_unique(iterator __position, const _Val& __v)
    {
      if (__position._M_node == _M_header->_M_left) { // begin()
        if (size() > 0 && 
            _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
          return _M_insert(__position._M_node, __position._M_node, __v);
        // first argument just needs to be non-null 
        else
          return insert_unique(__v).first;
      } else if (__position._M_node == _M_header) { // end()
        if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
          return _M_insert(0, _M_rightmost(), __v);
        else
          return insert_unique(__v).first;
      } else {
        iterator __before = __position;
        --__before;
        if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v)) 
            && _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
          if (_S_right(__before._M_node) == 0)
            return _M_insert(0, __before._M_node, __v); 
          else
            return _M_insert(__position._M_node, __position._M_node, __v);
        // first argument just needs to be non-null 
        } else
          return insert_unique(__v).first;
      }
    }
    
    template <class _Key, class _Val, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator 
    _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
      ::insert_equal(iterator __position, const _Val& __v)
    {
      if (__position._M_node == _M_header->_M_left) { // begin()
        if (size() > 0 && 
            !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
          return _M_insert(__position._M_node, __position._M_node, __v);
        // first argument just needs to be non-null 
        else
          return insert_equal(__v);
      } else if (__position._M_node == _M_header) {// end()
        if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
          return _M_insert(0, _M_rightmost(), __v);
        else
          return insert_equal(__v);
      } else {
        iterator __before = __position;
        --__before;
        if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
            && !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
          if (_S_right(__before._M_node) == 0)
            return _M_insert(0, __before._M_node, __v); 
          else
            return _M_insert(__position._M_node, __position._M_node, __v);
        // first argument just needs to be non-null 
        } else
          return insert_equal(__v);
      }
    }
    
    #ifdef __STL_MEMBER_TEMPLATES  
    
    template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
      template<class _II>
    void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
      ::insert_equal(_II __first, _II __last)
    {
      for ( ; __first != __last; ++__first)
        insert_equal(*__first);
    }
    
    template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc> 
      template<class _II>
    void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
      ::insert_unique(_II __first, _II __last) {
      for ( ; __first != __last; ++__first)
        insert_unique(*__first);
    }
    
    #else /* __STL_MEMBER_TEMPLATES */
    
    template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
    void
    _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
      ::insert_equal(const _Val* __first, const _Val* __last)
    {
      for ( ; __first != __last; ++__first)
        insert_equal(*__first);
    }
    
    template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
    void
    _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
      ::insert_equal(const_iterator __first, const_iterator __last)
    {
      for ( ; __first != __last; ++__first)
        insert_equal(*__first);
    }
    
    template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
    void 
    _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
      ::insert_unique(const _Val* __first, const _Val* __last)
    {
      for ( ; __first != __last; ++__first)
        insert_unique(*__first);
    }
    
    template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
    void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
      ::insert_unique(const_iterator __first, const_iterator __last)
    {
      for ( ; __first != __last; ++__first)
        insert_unique(*__first);
    }
    
    #endif /* __STL_MEMBER_TEMPLATES */
             
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::erase(iterator __position)
    {
      _Link_type __y = 
        (_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
                                                  _M_header->_M_parent,
                                                  _M_header->_M_left,
                                                  _M_header->_M_right);
      destroy_node(__y);
      --_M_node_count;
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
    {
      pair<iterator,iterator> __p = equal_range(__x);
      size_type __n = 0;
      distance(__p.first, __p.second, __n);
      erase(__p.first, __p.second);
      return __n;
    }
    
    template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
    typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type 
    _Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
      ::_M_copy(_Link_type __x, _Link_type __p)
    {
                            // structural copy.  __x and __p must be non-null.
      _Link_type __top = _M_clone_node(__x);
      __top->_M_parent = __p;
     
      __STL_TRY {
        if (__x->_M_right)
          __top->_M_right = _M_copy(_S_right(__x), __top);
        __p = __top;
        __x = _S_left(__x);
    
        while (__x != 0) {
          _Link_type __y = _M_clone_node(__x);
          __p->_M_left = __y;
          __y->_M_parent = __p;
          if (__x->_M_right)
            __y->_M_right = _M_copy(_S_right(__x), __y);
          __p = __y;
          __x = _S_left(__x);
        }
      }
      __STL_UNWIND(_M_erase(__top));
    
      return __top;
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::_M_erase(_Link_type __x)
    {
                                    // erase without rebalancing
      while (__x != 0) {
        _M_erase(_S_right(__x));
        _Link_type __y = _S_left(__x);
        destroy_node(__x);
        __x = __y;
      }
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::erase(iterator __first, iterator __last)
    {
      if (__first == begin() && __last == end())
        clear();
      else
        while (__first != __last) erase(__first++);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::erase(const _Key* __first, const _Key* __last) 
    {
      while (__first != __last) erase(*__first++);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
    {
      _Link_type __y = _M_header;      // Last node which is not less than __k. 
      _Link_type __x = _M_root();      // Current node. 
    
      while (__x != 0) 
        if (!_M_key_compare(_S_key(__x), __k))
          __y = __x, __x = _S_left(__x);
        else
          __x = _S_right(__x);
    
      iterator __j = iterator(__y);   
      return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ? 
         end() : __j;
    }
    
    //查找RB树中是否有键值为k的节点
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
    {
      _Link_type __y = _M_header; /* Last node which is not less than __k. */
      _Link_type __x = _M_root(); /* Current node. */
    
      while (__x != 0) {
        if (!_M_key_compare(_S_key(__x), __k))//若k比当前节点x键值小
          __y = __x, __x = _S_left(__x);
        else
          __x = _S_right(__x);
      }
      const_iterator __j = const_iterator(__y);   
      return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
        end() : __j;
    }
    
    //计算RB树中键值为k的节点的个数 
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::count(const _Key& __k) const
    {
      pair<const_iterator, const_iterator> __p = equal_range(__k);
      size_type __n = 0;
      distance(__p.first, __p.second, __n);
      return __n;
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::lower_bound(const _Key& __k)
    {
      _Link_type __y = _M_header; /* Last node which is not less than __k. */
      _Link_type __x = _M_root(); /* Current node. */
    
      while (__x != 0) 
        if (!_M_key_compare(_S_key(__x), __k))
          __y = __x, __x = _S_left(__x);
        else
          __x = _S_right(__x);
    
      return iterator(__y);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::lower_bound(const _Key& __k) const
    {
      _Link_type __y = _M_header; /* Last node which is not less than __k. */
      _Link_type __x = _M_root(); /* Current node. */
    
      while (__x != 0) 
        if (!_M_key_compare(_S_key(__x), __k))
          __y = __x, __x = _S_left(__x);
        else
          __x = _S_right(__x);
    
      return const_iterator(__y);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::upper_bound(const _Key& __k)
    {
      _Link_type __y = _M_header; /* Last node which is greater than __k. */
      _Link_type __x = _M_root(); /* Current node. */
    
       while (__x != 0) 
         if (_M_key_compare(__k, _S_key(__x)))
           __y = __x, __x = _S_left(__x);
         else
           __x = _S_right(__x);
    
       return iterator(__y);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator 
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::upper_bound(const _Key& __k) const
    {
      _Link_type __y = _M_header; /* Last node which is greater than __k. */
      _Link_type __x = _M_root(); /* Current node. */
    
       while (__x != 0) 
         if (_M_key_compare(__k, _S_key(__x)))
           __y = __x, __x = _S_left(__x);
         else
           __x = _S_right(__x);
    
       return const_iterator(__y);
    }
    
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    inline 
    pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
         typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
      ::equal_range(const _Key& __k)
    {
      return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
    }
    
    template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
    inline 
    pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
         typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
    _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
      ::equal_range(const _Key& __k) const
    {
      return pair<const_iterator,const_iterator>(lower_bound(__k),
                                                 upper_bound(__k));
    }
    
    //计算从 node 至 root路径中的黑节点数量 
    inline int 
    __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
    {
      if (__node == 0)
        return 0;
      else {
        int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;//若节点node为黑色,则bc为1
        if (__node == __root)//判断node是否为根节点
          return __bc;
        else
          return __bc + __black_count(__node->_M_parent, __root);//递归调用
      }
    }
    
    //验证己生这棵树是否符合RB树条件
    template <class _Key, class _Value, class _KeyOfValue, 
              class _Compare, class _Alloc>
    bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
    {
        //空树
      if (_M_node_count == 0 || begin() == end())
        return _M_node_count == 0 && begin() == end() &&
          _M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
      
      //最左节点到根节点的黑色节点数
      int __len = __black_count(_M_leftmost(), _M_root());
      //一下走访整个RB树,针对每个节点(从最小到最大)……
      for (const_iterator __it = begin(); __it != end(); ++__it) {
        _Link_type __x = (_Link_type) __it._M_node;
        _Link_type __L = _S_left(__x);
        _Link_type __R = _S_right(__x);
    
        if (__x->_M_color == _S_rb_tree_red)//违背性质4
            //如果一个节点是红色的,则它的两个孩子节点都是黑色的。
          if ((__L && __L->_M_color == _S_rb_tree_red) ||
              (__R && __R->_M_color == _S_rb_tree_red))
            return false;
    
        //以下是违背二叉查找树性质
        //节点的左孩子节点键值小于该节点键值
        //节点的右孩子节点键值大于该节点键值
        if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
          return false;
        if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
          return false;
    
        //[叶子结点到root]路径内的黑色节点数,与[最左节点至root]路径内的黑色节点不同。不符合RB树要求 
        //违背性质5
        if (!__L && !__R && __black_count(__x, _M_root()) != __len)
          return false;
      }
    
      if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
        return false; // 最左节点不为最小节点,不符合二叉查找树的要求
      if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
        return false;// 最右节点不为最大节点,不符不符合二叉查找树的要求
    
      return true;
    } 

    参考<<侯捷STL源码剖析>>

  • 相关阅读:
    uva 10986
    sed命令详解及应用实例
    JavaScript弹出层
    eclipspe导入hibernate的源代码
    用eclipse查看JDK源代码
    Java设计模式之适配器模式(Adapter)
    Java计算程序运行时间
    Java的IO流各个类的使用原则
    Java的IO输入输出流类的介绍(有图)
    解惑:字、位、字节、字符、字符串。
  • 原文地址:https://www.cnblogs.com/LearningTheLoad/p/7502982.html
Copyright © 2011-2022 走看看