zoukankan      html  css  js  c++  java
  • CV Stereo Vision

    Stereo Vision; Stereo correspondence;  dense two-frame correspond

     we mainly focus on the dense match instead of sparse or feature based stereo match methods.
    Application: view synthesis and imagebased rendering

    problems: noise, ambiguous, occlusion, and lack of texture. 

    assumptions:

    • Common assumptions are Lambertian surfaces,i.e., surfaces whose appearance does not vary with viewpoint.
    • Some algorithms also model specific kinds of camera noise, or differences in gain or bias.
    • algorithms have built-in smoothness assumptions (often implicit) without which the correspondence problem w ouldbe underconstrained and ill-posed.
    •  ……

    Terms:  

    •  reference image<-->matching image m
    • a disparity space (x; y; d) ->disparity space image/DSI: represent the confidence or log likelihood (i.e., cost) of a particular match implied by d(x; y).
    • a pixel (x; y)<-->3-D space (X; Y;Z)

    Four steps:

     (1) matching cost computation; (2) cost (support) aggregation;(3) disparity computation / optimization; and (4) disparity refinement.

     (1) Matching cost computation: -->the initial disparity space image M0(x; y; d).

    squared intensity differences (SSD) 

    absolute intensity differences (SAD)
    normalized cross-correlation

    gradient-based measures, phase and filter-bank responses

    truncated quadratics and contaminated Gaussians

     (2) cost (support) aggregation:

    Local and window-based methods aggregate the matching cost by summing or averaging over a support region in the DSI M(x; y; d).

     Two-dimensional evidence aggregation has been implemented using square windows or Gaussian convolution (traditional), multiple windows anchored at different points (shiftable windows), windows with adaptive sizes, and windows based on connected components of constant disparity. Three -dimensional support functions that have been proposed include limited disparity difference, limited disparity gradient, and Prazdny's coherence principle.

     (3) disparity computation / optimization:

    Local methods. a local “winner-tak e-all” ”(WTA) 

    Global optimization.(often skip the aggregation step)

    minimize the global energy: E(d)=Edata(d)+λEsmooth(d).

    Edata(d) =sum(M(x,y,d(x,y)))

    Esmooth(d) =sum(ρ(d(x,y)-d(x+1,y))+ρ(d(x,y)-d(x,y+1))), where ρ is some monotonically increasing function of disparity

    poor results occur at object boundaries, and the energy function solving this problems is called discontinuity-preserving based on robust ρ functions.

    dynamic programming--scanline optimization.(problems: occlusion,inter-scanline consistency.

    (4) disparity refinement:

    estimate sub-pixel disparity. 

    •  iterative gradient descent
    •  fitting a curve to the matching costs at discrete disparity levels 

  • 相关阅读:
    【转载】 K2 blackpearl 中的业务规则(Rules)
    【转载】工作流模式与K2实现(2)
    7.10学习内容。 J
    第三章 J
    C博客作业01分支、顺序结构
    C语言博客作业循环结构
    我的C语言第一篇博客!
    使用NDK创建及配置C++程序(原生纯C++项目,不包含JAVA代码)
    关于工作中的错误
    【博文翻译】Building Boost with NDK R5
  • 原文地址:https://www.cnblogs.com/Lemon-Li/p/3448673.html
Copyright © 2011-2022 走看看