原文: http://blog.donews.com/cwjattop/archive/2006/08/14/999108.aspx
C/C++语言中的typedef相信大家已经不陌生,本文对C/C++语言关键字typedef的各种用法作一个介绍。
typedef,顾名思义,为“类型定义”,可以解释为:将一种数据类型定义为某一个标识符,在程序中使用该标识符来实现相应数据类型变量的定义。例如:
typedef unsigned int UINT;
int main (int argc, char *argv[])
{
unsigned int a; // it’s OK
UINT b; // it’s OK, a and b are of the same type (int)
// . . . // code references the symbol a and b
return 0;
}
上面的代码中,a和b属于同一种数据类型(unsigned int型),因为UINT标识符已经标示为unsigned int类型。上面的代码看似简单,相信很多读者都用过这种方法,但这绝不是typedef的全部,下面介绍使用typedef定义复杂数据类型的几种用法。
1、定义结构体类型
结构体是一种较为常见的数据类型,在C/C++程序设计中使用的非常广泛。下面的代码就是结构体类型的一个应用:
#include <iostream.h>
int main (int argc, char *argv[])
{
struct {int x; int y;} point_a, point_b;
point_a.x = 10; point_a.y = 10;
point_b.x = 0; point_b.y = 0;
ios::sync_with_stdio();
cout << point_a.x + point_a.y << endl;
cout << point_b.x + point_b.y << endl;
return 0;
}
上面的代码包含了两个结构体变量:point_a和point_b,它们的数据类型相同,都是struct {int x; int y;}类型。这种说法可能有点别扭,习惯上说point_a和point_b都是结构体类型,为什么偏偏要说是struct {int x; int y;}类型呢?因为这种说法更加精确。比如在第一个例子中,对于“unsigned int a, b;”这条语句,我们可以说a和b都是整数类型,但更精确地说,它们应该是unsigned int类型。
既然struct {int x; int y;}是一种自定义的复杂数据类型,那么如果我们要定义多个struct {int x; int y;}类型的变量,应该如何编写代码呢?其实很简单,就当struct {int x; int y;}是一个简单数据类型就可以了:
struct {int x; int y;} var_1; // 定义了变量var_1
struct {int x; int y;} array_1 [10]; // 定义了数组array_1
struct {struct{int x; int y;} part1; int part2;} cplx;
上面的第三行定义了一个cplx变量,它的数据类型是一个复杂的结构体类型,有两个成员:part1和part2。part1是struct {int x; int y;}类型的,part2是int类型的。
从上面的例子可以看出,如果在程序中需要多处定义struct {int x; int y;}类型的变量,就必须多次输入“struct {int x; int y;}”这一类型名称,况且,如果在结构体中有某个成员是struct {int x; int y;}类型的,还会使得定义变得非常繁杂而且容易出错。为了输入程序的方便,同时为了增强程序的可读性,我们可以把struct {int x; int y;}这一数据类型定义为标识符“Point”,那么上面的程序就会变得更容易理解:
typedef struct {int x; int y;} Point;
Point var_1; // 定义了变量var_1
Point array_1 [10]; // 定义了数组array_1
struct {Point part1; int part2;} cplx; // 定义了复杂类型变量cplx
需要说明的是,我们还可以使用下面的方法来定义结构体变量:
struct t_Point {
int x; int y;}; // 注意,这里最后一个分号不能省略
int main(int argc, char* argv[])
{
struct t_Point a, b;
// . . .
return 0;
}
显然,这种方法没有typedef更加直观(在C++中,main函数第一行的struct关键字可以省略,但在标准C中,省略该关键字会出现编译错误)。
此外,对于定义链接队列中的结点,我们可以这样实现:
typedef struct t_node {
int Value;
struct t_node *next;
} Node;
当然也可以这样定义:
typedef strcut t_node Node;
struct t_node {
int Value;
Node *next;
};
2、定义数组类型
与定义结构体类型相似,可以使用typedef来定义数组类型,例如:
typedef int MyIntArray [100];
那么程序中的
MyIntArray ia;
就相当于
int ia[100];
3、定义函数指针
看下面的代码:
typedef void (*FUNCADDR)(int)
此处FUNCADDR是指向这样一个函数的指针,该函数的返回值为void类型,函数有一个int型的参数。再例如:
void print (int x)
{
printf (“%d\n”, x);
}
int main (int argc, char *argv[])
{
FUNCADDR pFunc;
pFunc = print; // 将指针指向print函数
(*pFunc)(25); // 调用函数print
return 0;
}
函数指针一般用于回调函数、中断处理过程的声明,以及在面向对象程序设计中对事件处理过程的声明。
4、定义类类型
类是面向对象程序设计语言中引入的一种新的数据类型,既然是数据类型,就可以使用typedef对其进行定义:
typedef class {
private:
int a;
public:
int b;
} MyClass;
其实这和定义结构体类型非常相似,不过很少有人这么使用。
关于C++中函数指针的使用(包含对typedef用法的讨论)
(一)简单的函数指针的应用。
//形式1:返回类型(*函数名)(参数表)
char (*pFun)(int);
char glFun(int a){ return;}
void main()
{
pFun = glFun;
(*pFun)(2);
}
第一行定义了一个指针变量pFun。首先我们根据前面提到的“形式1”认识到它是一个指向某种函数的指针,这种函数参数是一个int型,返回值是char类型。只有第一句我们还无法使用这个指针,因为我们还未对它进行赋值。
第二行定义了一个函数glFun()。该函数正好是一个以int为参数返回char的函数。我们要从指针的层次上理解函数——函数的函数名实际上就是一个指针,函数名指向该函数的代码在内存中的首地址。
然后就是可爱的main()函数了,它的第一句您应该看得懂了——它将函数glFun的地址赋值给变量pFun。main()函数的第二句中“*pFun”显然是取pFun所指向地址的内容,当然也就是取出了函数glFun()的内容,然后给定参数为2。
(二)使用typedef更直观更方便。
//形式2:typedef 返回类型(*新类型)(参数表)
typedef char (*PTRFUN)(int);
PTRFUN pFun;
char glFun(int a){ return;}
void main()
{
pFun = glFun;
(*pFun)(2);
}
typedef的功能是定义新的类型。第一句就是定义了一种PTRFUN的类型,并定义这种类型为指向某种函数的指针,这种函数以一个int为参数并返回char类型。后面就可以像使用int,char一样使用PTRFUN了。
第二行的代码便使用这个新类型定义了变量pFun,此时就可以像使用形式1一样使用这个变量了。
(三)在C++类中使用函数指针。
//形式3:typedef 返回类型(类名::*新类型)(参数表)
class CA
{
public:
char lcFun(int a){ return; }
};
CA ca;
typedef char (CA::*PTRFUN)(int);
PTRFUN pFun;
void main()
{
pFun = CA::lcFun;
ca.(*pFun)(2);
}
在这里,指针的定义与使用都加上了“类限制”或“对象”,用来指明指针指向的函数是那个类的这里的类对象也可以是使用new得到的。比如:
CA *pca = new CA;
pca->(*pFun)(2);
delete pca;
而且这个类对象指针可以是类内部成员变量,你甚至可以使用this指针。比如:
类CA有成员变量PTRFUN m_pfun;
void CA::lcFun2()
{
(this->*m_pFun)(2);
}
一句话,使用类成员函数指针必须有“->*”或“.*”的调用。
(一)简单的函数指针的应用。
//形式1:返回类型(*函数名)(参数表)
char (*pFun)(int);
char glFun(int a){ return;}
void main()
{
pFun = glFun;
(*pFun)(2);
}
第一行定义了一个指针变量pFun。首先我们根据前面提到的“形式1”认识到它是一个指向某种函数的指针,这种函数参数是一个int型,返回值是char类型。只有第一句我们还无法使用这个指针,因为我们还未对它进行赋值。
第二行定义了一个函数glFun()。该函数正好是一个以int为参数返回char的函数。我们要从指针的层次上理解函数——函数的函数名实际上就是一个指针,函数名指向该函数的代码在内存中的首地址。
然后就是可爱的main()函数了,它的第一句您应该看得懂了——它将函数glFun的地址赋值给变量pFun。main()函数的第二句中“*pFun”显然是取pFun所指向地址的内容,当然也就是取出了函数glFun()的内容,然后给定参数为2。
(二)使用typedef更直观更方便。
//形式2:typedef 返回类型(*新类型)(参数表)
typedef char (*PTRFUN)(int);
PTRFUN pFun;
char glFun(int a){ return;}
void main()
{
pFun = glFun;
(*pFun)(2);
}
typedef的功能是定义新的类型。第一句就是定义了一种PTRFUN的类型,并定义这种类型为指向某种函数的指针,这种函数以一个int为参数并返回char类型。后面就可以像使用int,char一样使用PTRFUN了。
第二行的代码便使用这个新类型定义了变量pFun,此时就可以像使用形式1一样使用这个变量了。
(三)在C++类中使用函数指针。
//形式3:typedef 返回类型(类名::*新类型)(参数表)
class CA
{
public:
char lcFun(int a){ return; }
};
CA ca;
typedef char (CA::*PTRFUN)(int);
PTRFUN pFun;
void main()
{
pFun = CA::lcFun;
ca.(*pFun)(2);
}
在这里,指针的定义与使用都加上了“类限制”或“对象”,用来指明指针指向的函数是那个类的这里的类对象也可以是使用new得到的。比如:
CA *pca = new CA;
pca->(*pFun)(2);
delete pca;
而且这个类对象指针可以是类内部成员变量,你甚至可以使用this指针。比如:
类CA有成员变量PTRFUN m_pfun;
void CA::lcFun2()
{
(this->*m_pFun)(2);
}
一句话,使用类成员函数指针必须有“->*”或“.*”的调用。