zoukankan      html  css  js  c++  java
  • 一个关于兑换零钱的豆瓣笔试题

    一个关于兑换零钱的豆瓣笔试题

      前几天做了个豆瓣笔试题,时间是90分钟,共有6题,要做4道,难度如果没看过类似的着实做起来太慢了。由于豆瓣上面的邮件说不要泄露(还有人会在后期笔试),所以拖到现在才写博客。我先把题目贴出来:将10000块钱兑换成由5000块、2000块、1000块、500块、100块、50块、10块、5块、1块的组成的零钱,问有多少种兑换方式?

      这个题,如果朋友们没做过,或许最开始就跟我一样,钱有9种,就做个9重循环,各层累加,当总钱等于10000时就计数器加1,这样是很简单没错,可惜在这数据量的前提下,我用c跑了5、6分钟也没跑出来,于是中止了这种天真的想法。但是还是有必要提下完成这种笨方法时需要用到的基础数据结构,后面我们会对它们进行改进:

      一个用于记录各种钱(金额)的数据:y[9];

      一个用于统计各种钱(数量)的数组:x[9],初始为0;

      一个用于标示各种钱(数量上限)的数组:z[9];

      一个用于统计从父循环[i]进入子循环[i+1]时(总金额)的数组:sum[9],i= 0 to 8;这里我需要重点说明,这个数组是必然需要的,一定得保存上层循环进入下层循环时的初始总金额数,否则当下层循环[i+1]执行完毕返回[i]时就无法知道[i]循环内正确的总金额初值了(除非你把[ 0 ~ i-1 ]层的都算一次加起来)。

      接下来,我讲下想到的几个优先考虑的改进:

      1、最外层循环应该是最大的数,也就是5000块,内层的依次递减。

      这种方式可以使步进更大,而且与后面的第3点配合是非常优秀的省时方法,于是令y[] = {5000,2000,1000,500,100,50,10,5,1},z[] = {3,6,11,21,101,201,1001,2001,10001};

      2、各层循环应该增加临界条件,当发现总数大于或等于时应该返回上层循环。

      如果只是按照z[]中的极限临界条件来做循环,明显会有非常多的无用功,所以应该在各层循环内部,判断总钱数是否已经大于、等于10000,如果大于就break到上层循环,如果等于就先计数器加1,再返回上层循环。

      3、最底层循环不执行(1块钱)

      前面i = 0 to 7层循环分别把5000、2000、1000、500、100、50、10、5块的都算过了,等到了i=8层,也就是算1块钱的数量时就可以直接跳过了,因为反正会有一个数量能满足累加和正好等于10000,所以前面实际上的x[]、y[]、z[]的大小都只要8就行了。这一点可以把循环次数上限最大的(10000次)的那重循环给省略掉,能大大加快计算时间,这时循环由9重循环减到8重。

      经过上面3点改进,心想这下应该快了吧,哪知道也花了两分多钟才出结果,仔细思考,觉得最大的问题还是在第2点,临界条件的判断上,使用2中的方法,会导致各层循环都有判断操作(大于、等于、小于),会影响执行效率,这是需要改善的问题,目前来说,第2点的实现方式有三种:

    复制代码
     1 // 方式1
     2 ...
     3     for (x[4]=0;x[4]<z[4];++x[4])
     4     {
     5         sum[4]=sum[3]+x[4]*y[4];
     6         if (sum[4]<10000) ;
     7         else if (sum[4]==10000) { ++count; break; }
     8         else break;
     9         for (x[5]=0;x[5]<z[5];++x[5])
    10         {
    11             ...
    12         }
    13     }
    14 ...
    15 
    16 // 方式2
    17 ...
    18     for (x[4]=0;x[4]<z[4];++x[4])
    19     {
    20         sum[4]=sum[3]+x[4]*y[4];
    21         if (sum[4]>10000) break;
    22         for (x[5]=0;x[5]<z[5];++x[5])
    23         {
    24             ...
    25         }
    26     }
    27 ...
    28 
    29 // 方式3
    30 ...
    31     for (x[4]=0;x[4]<z[4];++x[4])
    32     {
    33         sum[4]=sum[3]+x[4]*y[4];
    34         if (sum[4]==10000) { ++count; break; }        
    35         else if(sum[6]>10000) break;
    36         for (x[5]=0;x[5]<z[5];++x[5])
    37         {
    38             ...
    39         }
    40     }
    41 ...
    42 
    43 // i=7层代码
    44 ...
    45     for (x[7]=0;x[7]<z[7];++x[7])
    46     {
    47         sum[7]=sum[6]+x[7]*y[7];
    48         if (sum[7]>10000) break;
    49         ++count;
    50     }
    51 ...
    复制代码

      这三种都是属于换汤不换药的,它们在最后一层循环执行的代码是一模一样的,在i=0 to 6层执行的判断稍微有点区别,可以从下图看出执行的效率区别:

      它们的结果是一致的,但是虽然方式1代码量最多,但是速度却还是快些的(毕竟sum<10000的可能性最大了),不过在这么大的基数前面,这也是浮云了,都在2分半钟的时候才计算完。为了更好的优化第2点,提出下面的第4点改进:

      4、改变循环临界条件,通过当前循环来计算下层循环的结束值

      前面由于是用z[]来保存各层循环的执行上限,然后再在循环内判断总值是否超过,影响了执行效率,所以考虑:在[i]层循环时,根据当前累积初值sum[i]和下层循环的零钱面值y[i+1]来计算下层循环[i+1]的结束条件z[i+1],这样就不需要在循环内部不停地进行判断了,改进方式为:

    复制代码
     1 // 方式4
     2 ...
     3     for (x[4]=0;x[4]<z[4];++x[4])
     4     {
     5          sum[4]=sum[3]+x[4]*y[4];
     6          z[5] = (10000-sum[4])/y[5]+1;
     7          for (x[5]=0;x[5]<z[5];++x[5])
     8          {
     9               ...
    10          } 
    11     }
    12 ...
    复制代码

      一执行,恩,果断快了不少,只花了一分钟多一点便得到了结果:

      至此,我能想到的改进就没有了,因为没看过类似的题,花了不少时间,如果有朋友有更好的方法,欢迎指教讨论(ps:豆瓣招的Python程序员,后来试用Python解这个题目的效率真心比c慢十几倍,反正大概十分钟过去了还没算完,我就手动关了,有耐心的朋友可以去试试,告诉我到底要多久)。最后附上源代码:

    大数分解
    1 #include <stdio.h>
     2 #include <time.h>
     3 
     4 int main()
     5 {
     6     clock_t start,end;
     7     unsigned long long count = 0;
     8     int x[8],sum[8],z[8];
     9     int y[8]={5000,2000,1000,500,100,50,10,5};
    10     start = clock();
    11      for (x[0]=0,z[0]=3;x[0]<z[0];++x[0])
    12      {
    13          sum[0]=x[0]*y[0];
    14          z[1] = (10000-sum[0])/y[1]+1;
    15          for (x[1]=0;x[1]<z[1];++x[1])
    16          {
    17              sum[1]=sum[0]+x[1]*y[1];
    18              z[2] = (10000-sum[1])/y[2]+1;
    19              for (x[2]=0;x[2]<z[2];++x[2])
    20              {
    21                  sum[2]=sum[1]+x[2]*y[2];
    22                  z[3] = (10000-sum[2])/y[3]+1;
    23                  for (x[3]=0;x[3]<z[3];++x[3])
    24                  {
    25                      sum[3]=sum[2]+x[3]*y[3];
    26                      z[4] = (10000-sum[3])/y[4]+1;
    27                      for (x[4]=0;x[4]<z[4];++x[4])
    28                      {
    29                          sum[4]=sum[3]+x[4]*y[4];
    30                          z[5] = (10000-sum[4])/y[5]+1;
    31                          for (x[5]=0;x[5]<z[5];++x[5])
    32                          {
    33                              sum[5]=sum[4]+x[5]*y[5];
    34                              z[6] = (10000-sum[5])/y[6]+1;
    35                              for (x[6]=0;x[6]<z[6];++x[6])
    36                              {
    37                                  sum[6]=sum[5]+x[6]*y[6];
    38                                  z[7] = (10000-sum[6])/y[7]+1;
    39                                  for (x[7]=0;x[7]<z[7];++x[7])
    40                                  {
    41                                      ++count;
    42                                  }
    43                              }
    44                          }
    45                      }
    46                  }
    47              }
    48          }
    49       }
    50     end = clock();
    51     printf("Count=%lld,Time=%ldms",count,end-start);
    52     getchar();
    53 }

      转载请注明原址:http://www.cnblogs.com/lekko/archive/2013/04/05/3000403.html

     
    分类: AlgorithmsC++
    标签: C++算法
  • 相关阅读:
    Resharper进阶一
    脚本(js)控制页面输入
    IE图标消失 HTML文件图标变为未知图标的解决方法
    memcache_engine + memcachedb = 高性能分布式内存数据库
    sql 求差值
    MSN、QQ的网页链接代码
    IFrame语法:IFrame实例应用集
    Memcache协议
    Windows下的Memcache安装
    文本框 价格 保留两位小数 讨论
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3001540.html
Copyright © 2011-2022 走看看