zoukankan      html  css  js  c++  java
  • BST&AVL&红黑树简单介绍

    (BST&AVL&红黑树简单介绍)

    前言:

      节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm analysis in c++ (second edition)一书的作者所给,关于这3中二叉树在前面的博文算法设计和数据结构学习_4(《数据结构和问题求解》part4笔记)中已经有所介绍。这里不会去详细介绍它们的实现和规则,一是因为这方面的介绍性资料超非常多,另外这3种树的难点都在插入和删除部分,其规则本身并不多,但是要用文字和图形解释其实还蛮耗时的。所以,我们在看教程时,主要是要抓住这几种树的思想,然后对照对应的代码来看就ok了,能把代码看懂基本也就理解这些树的本质了。

      BST& AVL树:

      BST即二叉搜索树,它只需满足A节点左子树的值都小于A的值,右子树的值都大于A节点的值。其插入过程是依照它的属性值依次插入,删除过程分2种情况,如果是叶子节点,直接删除,如果是非叶子节点,则删除后将它的左子树中的最大节点填补,如果左子树为空,则用右子树中的最小节点填补。

      AVL树的构造过程中有下面四种情况需要调整,有可能只需旋转一次,有可能需要旋转2次。

      1. 单向右旋转(不平衡节点)平衡处理:

      当在左子树上插入左节点,使平衡因子由1增加至2时。

      2. 单向左旋转(不平衡节点)平衡处理:

      当在右子树上插入右节点,使平衡因子由-1增加至-2时。

      3. 双向旋转(先左旋转不平衡节点左孩子,然后右旋转不平衡节点)平衡处理:

      当在左子树上插入右节点,使平衡因子有1增加到2时。

      4. 双向旋转(先右旋转不平衡节点右孩子,然后左旋转不平衡节点)平衡处理:

      当在右子树上插入左节点,使平衡因子由-1增加至-2时。

      BST类实现的code如下(AVL类似):

    BinarySearchTree.h:

    复制代码
    #ifndef BINARY_SEARCH_TREE_H_
    #define BINARY_SEARCH_TREE_H_
    
    #include "Wrapper.h"
    
    
    template <class Comparable>
    class BinarySearchTree;
    
    template <class Comparable>
    class BinarySearchTreeWithRank;
    
    template <class Comparable>
    class BinaryNode
    {
        Comparable  element;
        BinaryNode *left;
        BinaryNode *right;
        int size;
    
        BinaryNode( const Comparable & theElement, BinaryNode *lt,
                    BinaryNode *rt, int sz = 1 )
          : element( theElement ), left( lt ), right( rt ), size( sz ) { }
    
        friend class BinarySearchTree<Comparable>;
        friend class BinarySearchTreeWithRank<Comparable>;
    };
    
    
    // BinarySearchTree class
    //
    // CONSTRUCTION: with no parameters or another BinarySearchTree.
    //
    // ******************PUBLIC OPERATIONS*********************
    // void insert( x )       --> Insert x
    // void remove( x )       --> Remove x
    // void removeMin( )      --> Remove smallest item
    // Comparable find( x )   --> Return item that matches x
    // Comparable findMin( )  --> Return smallest item
    // Comparable findMax( )  --> Return largest item
    // bool isEmpty( )        --> Return true if empty; else false
    // void makeEmpty( )      --> Remove all items
    // ******************ERRORS********************************
    // Exceptions are thrown by insert, remove, and removeMin if warranted
    
    template <class Comparable>
    class BinarySearchTree
    {
      public:
        BinarySearchTree( );
        BinarySearchTree( const BinarySearchTree & rhs );
        virtual ~BinarySearchTree( );
    
        Cref<Comparable> findMin( ) const;
        Cref<Comparable> findMax( ) const;
        Cref<Comparable> find( const Comparable & x ) const;
        bool isEmpty( ) const;
    
        void makeEmpty( );
        void insert( const Comparable & x );
        void remove( const Comparable & x );
        void removeMin( );
    
        const BinarySearchTree & operator=( const BinarySearchTree & rhs );
    
        typedef BinaryNode<Comparable> Node;
    
      protected:
        Node *root;
    
        Cref<Comparable> elementAt( Node *t ) const;
        virtual void insert( const Comparable & x, Node * & t ) const;
        virtual void remove( const Comparable & x, Node * & t ) const;
        virtual void removeMin( Node * & t ) const;
        Node * findMin( Node *t ) const;
        Node * findMax( Node *t ) const;
        Node * find( const Comparable & x, Node *t ) const;
        void makeEmpty( Node * & t ) const;
        Node * clone( Node *t ) const;
    };
    
    
    
    
    // BinarySearchTreeWithRank class.
    //
    // CONSTRUCTION: with no parameters or
    //    another BinarySearchTreeWithRank.
    //
    // ******************PUBLIC OPERATIONS*********************
    // Comparable findKth( k )--> Return kth smallest item
    // All other operations are inherited (but C++ requires 
    // some extra stuff).
    
    template <class Comparable>
    class BinarySearchTreeWithRank : public BinarySearchTree<Comparable>
    {
      public:
        Cref<Comparable> findKth( int k ) const;
    
        void insert( const Comparable & x )
          { BinarySearchTree<Comparable>::insert( x ); }
        void remove( const Comparable & x )
          { BinarySearchTree<Comparable>::remove( x ); }
        void removeMin( )
          { BinarySearchTree<Comparable>::removeMin( ); }
    
        typedef BinaryNode<Comparable> Node;
    
      private:
        void insert( const Comparable & x, Node * & t ) const;
        void remove( const Comparable & x, Node * & t ) const;
        void removeMin( Node * & t ) const;
        Node *findKth( int k, Node *t ) const;
    
        int treeSize( Node *t ) const
          { return t == NULL ? 0 : t->size; }
    };
    
    
    #include "BinarySearchTree.cpp"
    #endif
    复制代码

    BinarySearchTree.cpp:

    复制代码
    #include "BinarySearchTree.h"
    #include "Except.h"
    
    
    // Construct the tree.
    template <class Comparable>
    BinarySearchTree<Comparable>::BinarySearchTree( ) : root( NULL )
    {
    }
    
    // Copy constructor.
    template <class Comparable>
    BinarySearchTree<Comparable>::
    BinarySearchTree( const BinarySearchTree<Comparable> & rhs ) : root( NULL )
    { 
        *this = rhs;
    }
    
    // Destructor for the tree.
    template <class Comparable>
    BinarySearchTree<Comparable>::~BinarySearchTree( )
    {
        makeEmpty( );
    }
    
    // Insert x into the tree;
    // Throws DuplicateItemException if x is already there.
    template <class Comparable>
    void BinarySearchTree<Comparable>::insert( const Comparable & x )
    {
        insert( x, root );
    }
    
    // Remove x from the tree.
    // Throws ItemNotFoundException if x is not in the tree.
    template <class Comparable>
    void BinarySearchTree<Comparable>::remove( const Comparable & x )
    {
        remove( x, root );
    }
    
    // Remove minimum item from the tree.
    // Throws UnderflowException if tree is empty.
    template <class Comparable>
    void BinarySearchTree<Comparable>::removeMin( )
    {
        removeMin( root );
    }
    
    
    // Return the smallest item in the tree wrapped in a Cref object.
    template <class Comparable>
    Cref<Comparable> BinarySearchTree<Comparable>::findMin( ) const
    {
        return elementAt( findMin( root ) );
    }
    
    // Return the largest item in the tree wrapped in a Cref object.
    template <class Comparable>
    Cref<Comparable> BinarySearchTree<Comparable>::findMax( ) const
    {
        return elementAt( findMax( root ) );
    }
    
    // Find item x in the tree.
    // Return the matching item wrapped in a Cref object.
    template <class Comparable>
    Cref<Comparable> BinarySearchTree<Comparable>::find( const Comparable & x ) const
    {
        return elementAt( find( x, root ) );
    }
    
    // Make the tree logically empty.
    template <class Comparable>
    void BinarySearchTree<Comparable>::makeEmpty( )
    {
        makeEmpty( root );
    }
    
    // Test if the tree is logically empty.
    // Return true if empty, false otherwise.
    template <class Comparable>
    bool BinarySearchTree<Comparable>::isEmpty( ) const
    {
        return root == NULL;
    }
    
    // Deep copy.
    template <class Comparable>
    const BinarySearchTree<Comparable> &
    BinarySearchTree<Comparable>::
    operator=( const BinarySearchTree<Comparable> & rhs )
    {
        if( this != &rhs )
        {
            makeEmpty( );
            root = clone( rhs.root );
        }
        return *this;
    }
    
    // Internal method to wrap the element field in node t inside a Cref object.
    template <class Comparable>
    Cref<Comparable> BinarySearchTree<Comparable>::elementAt( Node *t ) const
    {
        if( t == NULL )
            return Cref<Comparable>( );
        else
            return Cref<Comparable>( t->element );
    }
    
    // Internal method to insert into a subtree.
    // x is the item to insert.
    // t is the node that roots the tree.
    // Set the new root.
    // Throw DuplicateItemException if x is already in t.
    template <class Comparable>
    void BinarySearchTree<Comparable>::
    insert( const Comparable & x, Node * & t ) const
    {
        if( t == NULL )
            t = new Node( x, NULL, NULL );
        else if( x < t->element )
            insert( x, t->left );
        else if( t->element < x )
            insert( x, t->right );
        else
            throw DuplicateItemException( );
    }
    
    // Internal method to remove from a subtree.
    // x is the item to remove.
    // t is the node that roots the tree.
    // Set the new root.
    // Throw ItemNotFoundException is x is not in t.
    template <class Comparable>
    void BinarySearchTree<Comparable>::
    remove( const Comparable & x, Node * & t ) const
    {
        if( t == NULL )
            throw ItemNotFoundException( );
        if( x < t->element )
            remove( x, t->left );
        else if( t->element < x )
            remove( x, t->right );
        else if( t->left != NULL && t->right != NULL ) // Two children
        {
            t->element = findMin( t->right )->element;
            removeMin( t->right );                   // Remove minimum
        }
        else
        {
            BinaryNode<Comparable> *oldNode = t;
            t = ( t->left != NULL ) ? t->left : t->right;  // Reroot t
            delete oldNode;                         // delete old root
        }
    }
    
    // Internal method to remove minimum item from a subtree.
    // t is the node that roots the tree.
    // Set the new root.
    // Throw UnderflowException if t is empty.
    template <class Comparable>
    void BinarySearchTree<Comparable>::removeMin( Node * & t ) const
    {
        if( t == NULL )
            throw UnderflowException( );
        else if( t->left != NULL )
            removeMin( t->left );
        else
        {
            Node *tmp = t;
            t = t->right;
            delete tmp;
        }
    }
    
    // Internal method to find the smallest item in a subtree t.
    // Return node containing the smallest item.
    template <class Comparable>
    BinaryNode<Comparable> * BinarySearchTree<Comparable>::findMin( Node *t ) const
    {
        if( t != NULL )
            while( t->left != NULL )
                t = t->left;
    
        return t;
    }
    
    // Internal method to find the largest item in a subtree t.
    // Return node containing the largest item.
    template <class Comparable>
    BinaryNode<Comparable> * BinarySearchTree<Comparable>::findMax( Node *t ) const
    {
        if( t != NULL )
            while( t->right != NULL )
                t = t->right;
    
        return t;
    }
    
    // Internal method to find an item in a subtree.
    // x is item to search for.
    // t is the node that roots the tree.
    // Return node containing the matched item.
    template <class Comparable>
    BinaryNode<Comparable> * BinarySearchTree<Comparable>::
    find( const Comparable & x, Node *t ) const
    {
        while( t != NULL )
            if( x < t->element )
                t = t->left;
            else if( t->element < x )
                t = t->right;
            else
                return t;    // Match
    
        return NULL;         // Not found
    }
    
    // Internal method to make subtree empty.
    template <class Comparable>
    void BinarySearchTree<Comparable>::makeEmpty( Node * & t ) const
    {
        if( t != NULL )
        {
            makeEmpty( t->left );
            makeEmpty( t->right );
            delete t;
        }
        t = NULL;
    }
    
    // Internal method to clone subtree.
    template <class Comparable>
    BinaryNode<Comparable> * BinarySearchTree<Comparable>::clone( Node * t ) const
    {
        if( t == NULL )
            return NULL;
        else
            return new Node( t->element, clone( t->left ), clone( t->right ), t->size );
    }
    
    // Returns the kth smallest item in the tree.
    // Throws ItemNotFoundException if k is out of range.
    template <class Comparable>
    Cref<Comparable> BinarySearchTreeWithRank<Comparable>::findKth( int k ) const
    {
        return elementAt( findKth( k, root ) );
    }
    
    // Internal method to insert into a subtree.
    // x is the item to insert.
    // t is the node that roots the tree.
    // Set the new root.
    // Throw DuplicateItemException if x is already in t.
    template <class Comparable>
    void BinarySearchTreeWithRank<Comparable>::
    insert( const Comparable & x, Node * & t ) const
    {
        if( t == NULL )
            t = new Node( x, NULL, NULL, 0 );
        else if( x < t->element )
            insert( x, t->left );
        else if( t->element < x )
            insert( x, t->right );
        else
            throw DuplicateItemException( );
    
        t->size++;
    }
    
    // Internal method to remove from a subtree.
    // x is the item to remove.
    // t is the node that roots the tree.
    // Set the new root.
    // Throw ItemNotFoundException is x is not in t.
    template <class Comparable>
    void BinarySearchTreeWithRank<Comparable>::
    remove( const Comparable & x, Node * & t ) const
    {
        if( t == NULL )
            throw ItemNotFoundException( );
        if( x < t->element )
            remove( x, t->left );
        else if( t->element < x )
            remove( x, t->right );
        else if( t->left != NULL && t->right != NULL ) // Two children
        {
            t->element = findMin( t->right )->element;
            removeMin( t->right );                   // Remove minimum
        }
        else
        {
            BinaryNode<Comparable> *oldNode = t;
            t = ( t->left != NULL ) ? t->left : t->right;  // Reroot t
            delete oldNode;                         // delete old root
            return;
        }
    
        t->size--;
    }
    
    // Internal method to remove minimum item from a subtree.
    // t is the node that roots the tree.
    // Set the new root.
    // Throw UnderflowException if t is empty.
    template <class Comparable>
    void BinarySearchTreeWithRank<Comparable>::removeMin( Node * & t ) const
    {
        if( t == NULL )
            throw UnderflowException( );
        else if( t->left != NULL )
            removeMin( t->left );
        else
        {
            Node *tmp = t;
            t = t->right;
            delete tmp;
            return;
        }
    
        t->size--;
    }
    
    // Internal method to find kth item in a subtree.
    // k is the desired rank.
    // t is the node that roots the tree.
    template <class Comparable>
    BinaryNode<Comparable> *
    BinarySearchTreeWithRank<Comparable>::findKth( int k, Node * t ) const
    {
        if( t == NULL )
            return NULL;
    
        int leftSize = treeSize( t->left );
    
        if( k <= leftSize )
            return findKth( k, t->left );
        else if( k == leftSize + 1 )
            return t;
        else
            return findKth( k - leftSize - 1, t->right );
    }
    复制代码

      红黑树:

      3个连续的节点构成的树不可能是Red-Black树。

      Log(n)基本上接近常量,比如说宇宙中原子的个数为10^69,取log后(10为底的情况)也只有69了,所以如果某个算法是log(n)的复杂度,那么这个算法是相当好的了。

      静态查找表一般用数组实现,而动态查找表一般用树实现。查找表的实现还有键树,trie树,hash表等。

      BST查找一定要从根节点开始,且BST的插入,查找算法一般都要用递归算法实现。可以从2-3树过渡到红黑树(红黑树的本质就是2-3-4树,比2-3树稍微复杂一点),2-3树是指每个节点的分支可以有2个或者3个。

      红黑树中的红节点都对应于2-3-4树中大节点(指该节点内可能有2个或者3个数据)中的内部节点。

      红黑树的查找性能和AVL相对,稍弱一点,但是实践表明,红黑树的插入过程中所需要进行的节点旋转次数比AVL树的要小。

      2-3-4树是一颗B树,属于外部查找树。

      红黑树的插入:

      按照插入节点的值从红黑树的根节点依次往下插入。如果碰到其path上的节点左右节点都是红色的,则需要进行节点的颜色变换,颜色变换后如果出现了2个连续的红色节点,则需要进行旋转,旋转过程中当然也会有颜色变换。 直到找到需要插入的位置将其插入,因为插入的节点只能是红色的,所以又可能引起2个连续的红色节点,这时候仍然需要使用上面的规则进行调整。

      红黑树的类实现code如下:

    RedBlackTree.h:

    复制代码
    #ifndef RED_BLACK_TREE_H_
    #define RED_BLACK_TREE_H_
    
    #include "Wrapper.h"
    
    // Red-black tree class.
    //
    // CONSTRUCTION: with negative infinity object
    //
    // ******************PUBLIC OPERATIONS*********************
    // void insert( x )       --> Insert x
    // void remove( x )       --> Remove x (unimplemented)
    // Comparable find( x )   --> Return item that matches x
    // Comparable findMin( )  --> Return smallest item
    // Comparable findMax( )  --> Return largest item
    // bool isEmpty( )        --> Return true if empty; else false
    // void makeEmpty( )      --> Remove all items
    // ******************ERRORS********************************
    // Throws exceptions as warranted.
    
    
    template <class Comparable>
    class RedBlackTree;
    
    template <class Comparable>
    class RedBlackNode;
    
    template <class Comparable>
    class RedBlackTree
    {
      public:
        RedBlackTree( const Comparable & negInf );
        RedBlackTree( const RedBlackTree & rhs );
        ~RedBlackTree( );
    
        Cref<Comparable> findMin( ) const;
        Cref<Comparable> findMax( ) const;
        Cref<Comparable> find( const Comparable & x ) const;
        bool isEmpty( ) const;
    
        void makeEmpty( );
        void insert( const Comparable & x );
        void remove( const Comparable & x );
    
        enum { RED, BLACK };
    
        const RedBlackTree & operator=( const RedBlackTree & rhs );
    
        typedef RedBlackNode<Comparable> Node;
    
      private:
        Node *header;   // The tree header (contains negInf)
        Node *nullNode;
    
          // Used in insert routine and its helpers (logically static)
        Node *current;
        Node *parent;
        Node *grand;
        Node *great;
    
          // Usual recursive stuff
        void reclaimMemory( Node *t ) const;
        RedBlackNode<Comparable> * clone( Node * t ) const;
    
          // Red-black tree manipulations
        void handleReorient( const Comparable & item );
        RedBlackNode<Comparable> * rotate( const Comparable & item,
                                    Node *parent ) const;
        void rotateWithLeftChild( Node * & k2 ) const;
        void rotateWithRightChild( Node * & k1 ) const;
    };
    
    template <class Comparable>
    class RedBlackNode
    {
        Comparable    element;
        RedBlackNode *left;
        RedBlackNode *right;
        int           color;
    
        RedBlackNode( const Comparable & theElement = Comparable( ),
                          RedBlackNode *lt = NULL, RedBlackNode *rt = NULL,
                          int c = RedBlackTree<Comparable>::BLACK )
          : element( theElement ), left( lt ), right( rt ), color( c ) { }
        friend class RedBlackTree<Comparable>;
    };
    
    #include "RedBlackTree.cpp"
    #endif
    复制代码

    RedBlackTree.cpp:

    复制代码
    #include "RedBlackTree.h"
    #include "Except.h"
    
    // Construct the tree.
    // negInf is a value less than or equal to all others.
    template <class Comparable>
    RedBlackTree<Comparable>::RedBlackTree( const Comparable & negInf )
    {
        nullNode    = new Node;//空节点
        nullNode->left = nullNode->right = nullNode;
        header      = new Node( negInf );//头节点,指向自己
        header->left = header->right = nullNode;
    }
    
    // Copy constructor.
    template <class Comparable>
    RedBlackTree<Comparable>::RedBlackTree( const RedBlackTree<Comparable> & rhs )
    {
        nullNode    = new Node;
        nullNode->left = nullNode->right = nullNode;
        header      = new Node( rhs.header->element );//只用rhs树中的头节点内容构造自己的头节点
        header->left = header->right = nullNode;
        *this = rhs;
    }
    
    // Destroy the tree.
    template <class Comparable>
    RedBlackTree<Comparable>::~RedBlackTree( )
    {
        makeEmpty( );
        delete nullNode;
        delete header;
    }
    
    // Insert item x into the tree.
    // Throws DuplicateItemException if x is already present.
    template <class Comparable>
    void RedBlackTree<Comparable>::insert( const Comparable & x )
    {
        current = parent = grand = header;//一开始都定义为头节点
        nullNode->element = x;
    
        while( current->element != x )//一般情况下刚调用该函数时这个whlie条件是满足的,因为此时的current->element为无穷小
        {
            great = grand; grand = parent; parent = current;//全部更新
            current = x < current->element ? current->left : current->right;
    
              // Check if two red children; fix if so
            if( current->left->color == RED && current->right->color == RED )//此时等价于2-3-4树中的4节点,因此需要将中间的节点往父节点方向上长
                handleReorient( x );//往上生长节点,包括旋转和颜色变换
        }
    
          // Insertion fails if already present
        if( current != nullNode )
            throw DuplicateItemException( );
        current = new Node( x, nullNode, nullNode );//其实current永远是需要查找的下一个,有点先行的味道
    
          // Attach to parent
        if( x < parent->element )
            parent->left = current;
        else
            parent->right = current;
        handleReorient( x );
    }
    
    // Remove item x from the tree.
    // Not implemented in this version.
    template <class Comparable>
    void RedBlackTree<Comparable>::remove( const Comparable & x )
    {
        cout << "Sorry, remove unimplemented; " << x <<
             " still present" << endl;
    }
    
    // Find the smallest item  the tree.
    // Return the smallest item wrapped in a Cref object.
    template <class Comparable>
    Cref<Comparable> RedBlackTree<Comparable>::findMin( ) const
    {
        if( isEmpty( ) )
            return Cref<Comparable>( );
    
        Node *itr = header->right;
    
        while( itr->left != nullNode )
            itr = itr->left;
    
        return Cref<Comparable>( itr->element );
    }
    
    // Find the largest item in the tree.
    // Return the largest item wrapped in a Cref object.
    template <class Comparable>
    Cref<Comparable> RedBlackTree<Comparable>::findMax( ) const
    {
        if( isEmpty( ) )
            return Cref<Comparable>( );
    
        Node *itr = header->right;
    
        while( itr->right != nullNode )
            itr = itr->right;
    
        return Cref<Comparable>( itr->element );
    }
    
    // Find item x in the tree.
    // Return the matching item wrapped in a Cref object.
    template <class Comparable>
    Cref<Comparable> RedBlackTree<Comparable>::find( const Comparable & x ) const
    {
        nullNode->element = x;
        Node *curr = header->right;
    
        for( ; ; )
        {
            if( x < curr->element )
                curr = curr->left;
            else if( curr->element < x )
                curr = curr->right;
            else if( curr != nullNode )
                return Cref<Comparable>( curr->element );
            else
                return Cref<Comparable>( );
        }
    }
    
    // Make the tree logically empty.
    template <class Comparable>
    void RedBlackTree<Comparable>::makeEmpty( )
    {
        reclaimMemory( header->right );
        header->right = nullNode;
    }
    
    // Test if the tree is logically empty.
    // Return true if empty, false otherwise.
    template <class Comparable>
    bool RedBlackTree<Comparable>::isEmpty( ) const
    {
        return header->right == nullNode;
    }
    
    // Deep copy.
    template <class Comparable>
    const RedBlackTree<Comparable> &
    RedBlackTree<Comparable>::operator=( const RedBlackTree<Comparable> & rhs )
    {
        if( this != &rhs )
        {
            makeEmpty( );
            header->right = clone( rhs.header->right );
        }
    
        return *this;
    }
    
    // Internal method to clone subtree.
    template <class Comparable>
    RedBlackNode<Comparable> *
    RedBlackTree<Comparable>::clone( Node * t ) const
    {
        if( t == t->left )  // Cannot test against nullNode!!!
            return nullNode;
        else
            return new RedBlackNode<Comparable>( t->element, clone( t->left ),
                                           clone( t->right ), t->color );
    }
    
    // Internal routine that is called during an insertion
    // if a node has two red children. Performs flip and rotations.
    // item is the item being inserted.
    template <class Comparable>
    void RedBlackTree<Comparable>::handleReorient( const Comparable & item )
    {
            // Do the color flip
        current->color = RED;
        current->left->color = BLACK;//空节点也被认为是黑色的
        current->right->color = BLACK;
    
        if( parent->color == RED )      // Have to rotate
        {
            grand->color = RED;
            if( item < grand->element != item < parent->element )//这个条件表示item是grand的内子孙,因此需要2次调整
                parent = rotate( item, grand ); // Start dbl rotate
            current = rotate( item, great );
            current->color = BLACK;
        }
        header->right->color = BLACK;   // Make root black,head其实是根节点
    }
    
    // Internal routine that performs a single or double rotation.
    // Because the result is attached to the parent, there are four cases.
    // Called by handleReorient.
    // item is the item in handleReorient.
    // parent is the parent of the root of the rotated subtree.
    // Return the root of the rotated subtree.
    template <class Comparable>
    RedBlackNode<Comparable> *
    RedBlackTree<Comparable>::rotate( const Comparable & item,
                          Node *theParent ) const
    {
        if( item < theParent->element )
        {
            item < theParent->left->element ?
                rotateWithLeftChild( theParent->left )  :  // LL
                rotateWithRightChild( theParent->left ) ;  // LR
            return theParent->left;
        }
        else
        {
            item < theParent->right->element ?
                rotateWithLeftChild( theParent->right ) :  // RL
                rotateWithRightChild( theParent->right );  // RR
            return theParent->right;
        }
    }
    
    // Rotate binary tree node with left child.
    template <class Comparable>
    void RedBlackTree<Comparable>::
    rotateWithLeftChild( Node * & k2 ) const
    {
        Node *k1 = k2->left;
        k2->left = k1->right;
        k1->right = k2;
        k2 = k1;
    }
    
    // Rotate binary tree node with right child.
    template <class Comparable>
    void RedBlackTree<Comparable>::
    rotateWithRightChild( Node * & k1 ) const
    {
        Node *k2 = k1->right;
        k1->right = k2->left;
        k2->left = k1;
        k1 = k2;
    }
    
    // Internal method to reclaim internal nodes in subtree t.
    template <class Comparable>
    void RedBlackTree<Comparable>::reclaimMemory( Node *t ) const
    {
        if( t != t->left )
        {
            reclaimMemory( t->left );
            reclaimMemory( t->right );
            delete t;
        }
    }
    复制代码

      参考资料:

      data structures and algorithm analysis in c++ (second edition),mark allen Weiss.

         算法设计和数据结构学习_4(《数据结构和问题求解》part4笔记)

     

    作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。
     
    分类: 数据结构
    标签: 数据结构算法
  • 相关阅读:
    线段树快速查找区间值
    html学习笔记
    区块链是怎么运行的
    【C++ 流类库与输入输出 】实验七
    【C++ 实验六 继承与派生】
    10天冲刺第四天后端app开发
    10天冲刺第三天后端app开发
    10天冲刺第二天之完成后端
    第二次冲刺第一天之后台管理
    第一阶段--冲刺总结
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3142784.html
Copyright © 2011-2022 走看看