zoukankan      html  css  js  c++  java
  • 寻找两个已序数组中的第k大元素

    寻找两个已序数组中的第k大元素

    1、问题描述

      给定两个数组,其大小分别为,假定它们都是已按照增序排序的数组,我们用尽可能快的方法去求两个数组合并后第大的元素,其中,。例如,对于数组。我们记第大的数为,则时,。这是因为排序之后的数组,第4大的数是4。我们针对这一个问题进行探讨。

    2、算法一

      第一眼看到这个题的时候,我们能够很快地想出来最基本的一种解法:对数组进行合并,然后求出其第大的数,即找到答案。合并的过程,我们可以参考归并排序的合并子数组的过程,时间复杂度为。下面给出算法:

     View Code
    int findKthMaxNumOfArrays(int *a,int m,int *b,int n,int k)
    {
        int *p=a;
        int *q=b;
        int i=0;
        int j=0;
        int cur=0;
        while(i<m&&j<n)
        {
            if(a[i]<b[j])
            {
                cur++;
                if(cur==k) return a[i];
                i++;
            }
            else 
            {
                cur++;
                if(cur==k) return b[j];
                j++;
            }
        }
        while(i<m)
        {
            cur++;
            if(cur==k) return a[i];
            i++;
        }
        while(j<n)
        {
            cur++;
            if(cur==k) return b[j];
            j++;
        }
    }

    3、算法二

      实际上算法一的时间复杂度已经是线性的了。可是,是否存在更快的算法能够完成这项任务呢?答案是肯定的,时间复杂度可以缩短到时间内。在这种算法中,二分的思想十分重要。我们将数组分为两半,前一部分的大小为,后一部分为;数组同时分为这样两部分,第一部分的大小为,第二部分的大小为。如下图所示:

    通过,我们将每个数组分为2部分,分别记为。假定,如果不是,我们只需要交换两个数组即可。接下来,我们看第大的数落在了哪个区间里面,令,这个实际上是包含了。如果时,则说明肯定不在里面,这是由于:中的所有数,而中的所有数与,而这部分数总共有个,说明是第个,若出现在中,则说明,与假设矛盾。我们可以得出该结论。因此,在判断之后,我们可以剔除数组部分,然后再在新数组中寻找;另外,如果,则说明肯定不在部分,这部分的证明同上一个证明相同,不再赘述。同样地,在判断之后,我们可以剔除数组部分,然后再在新数组中寻找。基于这样一种思想,我们每次迭代,都删除了其中一个数组中一半的元素,时间复杂度大约可认为是

      在实现的时候,我们需要特别注意边界条件,详细的代码如下:

     View Code
    int findKthMaxNumOfArrays(int *A, int m, int *B, int n, int k)
    {
            if(m == 0)return B[k-1];
            if(n == 0)return A[k-1];
            int i = m>>1, j = n>>1, *p, *q, t;
            if(A[i] <= B[j])p = A, q = B;
            else p = B, q = A, swap(i, j), swap(m, n);
            t = i + j + 1;
            if(t >= k)return func(p, m, q, j, k);
            else if(t < k)return func(p+i+1, m-i-1, q, n, k-i-1);
        }

    4、扩展问题

      通过算法二,我们很容易地解决一个类似的问题:求两个已序数组,的中位数。所谓的中位数,对于一个有个元素的已序数组,如果是奇数,则中位数是第个元素的值;如果是偶数,则它的中位数是第与第数的平均值。对于为奇数,则利用算法二求第个元素的值即可,对于为偶数,利用算法二求第个与第个元素的值,求其平均值即可。

      对于这个问题,在LeetCode中有另外一种解法,但是阅读后发现其需要处理的个别case太多,相比而言没有本文所介绍的算法简洁。如果想要了解,给出链接:http://leetcode.com/2011/03/median-of-two-sorted-arrays.html


    作者:Chenny Chen 
    出处:http://www.cnblogs.com/XjChenny/ 
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

     
  • 相关阅读:
    Eclipse/MyEclipse 选择Android NDK目录时提示“Not a valid NDK directory”
    Eclipse更改颜色主题
    Android模拟器访问本机服务器
    DIV水平垂直居中的CSS兼容写法
    Python3中使用PyMySQL连接Mysql
    Windows7 IE11 F12控制台DOC资源管理器报错的问题解决方法
    Windows 7无法卸载及安装IE11的解决方法
    查看端口占用
    VS2010/VS2013中ashx代码折叠的问题
    手机页面关于头部固定定位与input出现的问题
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3162751.html
Copyright © 2011-2022 走看看