zoukankan      html  css  js  c++  java
  • 手把手教你cuda5.5与VS2010的编译环境搭建

    手把手教你cuda5.5与VS2010的编译环境搭建

    目前版本的cuda是很方便的,它的一个安装里面包括了Toolkit`SDK`document`Nsight等等,而不用你自己去挨个安装,这样也避免了版本的不同步问题。

    1 cuda5.5的下载地址,官方网站即可:

         https://developer.nvidia.com/cuda-downloads   在里面选择你所对应的电脑版本即可。

    2 VS2010这个没什么说的了,网上各种的免费资源,下载一个不需要钱的就行。

    3 Cuda的安装:(win7版32bit)


      3.1 cuda的安装文件

      

      直接双击exe文件,弹出后,首先会监测一下你的运行环境,如果找不到Nividia对应的显卡设备,他会提示你是否要继续安装。这里面nvidia的显卡,最起码也是8800以上的,要不是无法编写CUDA的。千万不要电脑上面是intel或者AMD的显卡,却要编写cuda,除非你有钱买一个cuda-x86这个编译器。

      3.2 弹出的对话框直接OK就行,这个是CUDA的一些安装文件,无所谓的:

     

      3.3 他会监测你的电脑是否支持cuda的搭建,等待就行

      3.4 系统检查

      3.5 选择同意并继续

      3.6 推荐先选择自定义安装

      3.7 最主要的是cuda documentcuda Toolkit cuda samples(SDK),Nsight图形驱动程序,3D如果需要的话安装,不安装也无所谓。这里主要就是能看见都有什么,免得漏掉了,博主当初就因为选了精简安装,没安装上SDK。

      

      3.7 安装的位置,推荐自己建三个好找的文件夹,不用他默认的路径,免得稍后配置环境变量麻烦。

    博主的安装路径为:

      3.8 下一步安装就行了。

    至此,cuda的安装就搞定了。


     

    4 接下来配置cuda的环境变量,默认安装好后,他会自动帮你设置好2个环境变量,但是最好还自己添加下其他的几个,方便日后配置vs使用

     

    上面的两个环境变量是cuda默认配置的,接下来添加

    复制代码
    CUDA_BIN_PATH  %CUDA_PATH%in
    
    CUDA_LIB_PATH  %CUDA_PATH%libWin32
    
    CUDA_SDK_BIN  %CUDA_SDK_PATH%inWin32
    
    CUDA_SDK_LIB  %CUDA_SDK_PATH%commonlibWin32
    
    CUDA_SDK_PATH  C:cudacudasdkcommon
    复制代码

     

    添加完就行了

     


     

    5 接下来是cuda的安装成功与否的监测了,这个步骤我们用到两个东西,这两个东西,都是cuda为我们准备好的。

    deviceQuery.exe 和 bandwithTest.exe

      首先启动cmd DOS命令窗口(博主的cuda安装到c:cuda文件夹下)

      默认进来的是c:usersAdmistrator>路径,输入 cd .. 两次,来到c:目录下

      输入dir 找到安装的cuda文件夹

    进入Release文件夹后,直接执行bandwithTest.exe

    再执行deviceQuery.exe

    得到以上信息,因为我的显卡比较古老9300属于第一代的cuda显卡了。Rsult=PASS及说明,都通过了。如果Rsult=Fail 那不好意思,重新安装吧(或者是您的显卡真心不给力)。


     

    5 最后就是VS的配置了

      5.1 启动VS2010

      5.2 新建一个win32的控制台工程,空的。

      5.3 右键源文件文件夹->新建项->选择cuda c/c++->新建一个以.cu结尾的文件

      5.4 右键工程-》生成自定义-》选择cuda生成

      5.5 右键test.cu-》属性-》选择cuda c/c++编译器

      5.6 右键工程-》属性-》链接器-》常规-》附加库目录-》添加目录 $(CUDA_PATH_V5_5)lib$(Platform);

      5.7 在链接器-》输入中添加 cudart.lib

     

      5.8 在工具-》选项-》文本编辑器-》文件扩展名-》添加cu cuh两个文件扩展名

     

    至此,编译环境的相关搭建就完成了。

     


     

     

    下面提供了一段test.cu的代码,供测试使用:

     

    复制代码
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <cuda_runtime.h> 
     4 
     5 #define DATA_SIZE 1024
     6 #define checkCudaErrors(err)  __checkCudaErrors (err, __FILE__, __LINE__)
     7 #define getLastCudaError(msg)  __getLastCudaError (msg, __FILE__, __LINE__)
     8 
     9 int data[DATA_SIZE];
    10 
    11 ////////////////////////////////////////////////////////////////////////////////
    12 // These are CUDA Helper functions
    13 
    14 // This will output the proper CUDA error strings in the event that a CUDA host call returns an error
    15 
    16 
    17 inline void __checkCudaErrors(cudaError err, const char *file, const int line )
    18 {
    19     if(cudaSuccess != err)
    20     {
    21         fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.
    ",file, line, (int)err, cudaGetErrorString( err ) );
    22         return ;        
    23     }
    24 }
    25 
    26 // This will output the proper error string when calling cudaGetLastError
    27 
    28 
    29 inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )
    30 {
    31     cudaError_t err = cudaGetLastError();
    32     if (cudaSuccess != err)
    33     {
    34         fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.
    ",
    35         file, line, errorMessage, (int)err, cudaGetErrorString( err ) );
    36         return ;
    37     }
    38 }
    39 
    40 // end of CUDA Helper Functions
    41 
    42 __global__ static void sumOfSquares(int *num, int * result){
    43     int sum=0;
    44     int i;
    45     for(i=0;i<DATA_SIZE;i++) {
    46         sum += num[i]*num[i];
    47         }
    48     *result = sum;
    49 }
    50 void GenerateNumbers(int *number, int size){
    51     for(int i = 0; i < size; i++) {
    52         number[i] = rand() % 10;
    53         printf("number[%d] is %d
    ",i,number[i]);
    54     }}
    55     
    56 int main(){
    57 
    58         cudaSetDevice(0);
    59         cudaDeviceSynchronize();
    60         cudaThreadSynchronize();
    61 
    62         GenerateNumbers(data, DATA_SIZE);
    63 
    64         int * gpudata, * result;
    65         int sum;
    66 
    67         checkCudaErrors( cudaMalloc((void**) &gpudata, sizeof(int)*DATA_SIZE));
    68         checkCudaErrors(cudaMalloc((void**) &result, sizeof(int)));
    69         checkCudaErrors(cudaMemcpy(gpudata, data, sizeof(int)*DATA_SIZE,cudaMemcpyHostToDevice));
    70 
    71         sumOfSquares<<<1, 1, 0>>>(gpudata, result);
    72 
    73         checkCudaErrors(cudaMemcpy(&sum, result, sizeof(int), cudaMemcpyDeviceToHost));
    74 
    75         cudaFree(gpudata);
    76         cudaFree(result);
    77 
    78         printf("-----------sum: %d
    ",sum);
    79 
    80         sum = 0;
    81         for(int i = 0; i < DATA_SIZE; i++) {
    82             sum += data[i] * data[i];
    83         }
    84         printf("sum (CPU): %d
    ", sum);
    85 
    86         getchar();
    87         return 0;
    88 }
    复制代码

     

     

     

     

     
     
    分类: Cuda
  • 相关阅读:
    Ural 1966 Cycling Roads
    SQL Server 2008 安装(lpt亲测)
    cf Round#273 Div.2
    poj 2318 TOYS
    计算几何好模板
    ❤Friends
    限制pyqt5应用程序 只允许打开一次
    pyqt5 菜单栏+信息提示框
    Android Linux deploy
    system分区解锁
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3248814.html
Copyright © 2011-2022 走看看