zoukankan      html  css  js  c++  java
  • 二叉树的遍历

     

    二叉树的遍历:

    先序,中序,后序;

    二叉树的遍历有三种常见的方法,

    最简单的实现就是递归调用,

    另外就是飞递归的迭代调用,

    最后还有O(1)空间的morris遍历;

    二叉树的结构定义:

    1 struct TreeNode {
    2      int val;
    3      TreeNode *left;
    4      TreeNode *right;
    5      TreeNode(int x) : val(x), left(NULL), right(NULL) {}
    6  };

    1.先序遍历:

    递归:

    复制代码
    1 void preOrderRecursive(TreeNode *root) {
    2     if (!root)
    3         return;
    4     cout << root->val << " ";
    5     preOrderRecursive(root->left);
    6     preOrderRecursive(root->right);
    7 }
    复制代码

    迭代:

    迭代要用到栈来保存父亲结点,

    先序遍历,所有访问过的结点都先输出,

    先遍历当前结点和当前结点的左子树,一直到左子树的最左边的结点,

    遍历过的这些结点都入栈,左孩子为空时,栈顶元素设为当前结点,出栈,

    然后把当前结点设为该节点的右孩子,循环一直到当前结点为空且栈也为空。

    复制代码
     1 void preOrderIterative(TreeNode *root) {
     2     if (!root)
     3         return;
     4     stack<TreeNode*> stk;
     5     TreeNode *cur = root;
     6     while (cur || !stk.empty()) {
     7         while (cur) {
     8             cout << cur->val << " ";
     9             stk.push(cur);
    10             cur = cur->left;
    11         }
    12         if (!stk.empty()) {
    13             cur = stk.top();
    14             stk.pop();
    15             cur = cur->right;
    16         }
    17     }
    18 }
    19 /* 
    20  * 模拟递归
    21  * */
    22 void preOrderIterative1(TreeNode *root) {
    23     if (!root)
    24         return;
    25     stack<TreeNode*> stk;
    26     stk.push(root);
    27     while (!stk.empty()) {
    28         TreeNode* tp = stk.top();
    29         stk.pop();
    30         cout << tp->val << " ";
    31         if (tp->right) 
    32             stk.push(tp->right);
    33         if (tp->left)
    34             stk.push(tp->left);
    35     }
    36 }
    复制代码

    Morris方法:

    1.当前结点的左孩子为空,输出当前结点,并设置当前结点的右孩子为当前结点;

    2.当前结点的左孩子不为空:

      a.找到当前结点中序遍历的前驱结点,即为该节点的左孩子的最右边的结点,前驱结点的右孩子为空,则设置前驱结点的右孩子为当前结点,并输出当前结点,设当前结点的左孩子为当前结点;

      b.前驱结点的右孩子为当前结点,则恢复前驱结点的右孩子为NULL,设当前结点的右孩子为当前结点;

    复制代码
     1 void preOrderMorris(TreeNode *root) {
     2     if (!root)
     3         return;
     4     TreeNode* cur = root;
     5     TreeNode* pre = NULL;
     6     while (cur) {
     7         if (cur->left == NULL) {
     8             cout << cur->val << " ";
     9             cur = cur->right;
    10         }
    11         else {
    12             pre = cur->left;
    13             while (pre->right != NULL && pre->right != cur) 
    14                 pre = pre->right;
    15             if (pre->right == NULL) {
    16                 cout << cur->val << " ";
    17                 pre->right = cur;
    18                 cur = cur->left;
    19             }
    20             else {
    21                 pre->right = NULL;
    22                 cur = cur->right;
    23             }
    24         }
    25     }
    26 }
    复制代码

    2.中序遍历:

    递归:

    复制代码
    1 void inOrderRecursive(TreeNode *root) {
    2     if (!root)
    3         return;
    4     inOrderRecursive(root->left);
    5     cout << root->val << " ";
    6     inOrderRecursive(root->right);
    7 }
    复制代码

    迭代:

    1.如果当前结点的左孩子不为空,则把当前结点的左孩子入栈,知道当前结点的左孩子为空;

    2.如果栈不为空,则出栈,栈顶元素为当前结点,输出当前结点,并把当前结点的右孩子设为当前结点;

    重复1,2直到当前结点为NULL且栈也为空;

    复制代码
     1 void inOrderIterative(TreeNode *root) {
     2     if (!root)
     3         return;
     4     stack<TreeNode*> stk;
     5     TreeNode *cur = root;
     6     while (cur || !stk.empty()) {
     7         while (cur) {
     8             stk.push(cur);
     9             cur = cur->left;
    10         }
    11         if (!stk.empty()) {
    12             cur = stk.top();
    13             stk.pop();
    14             cout << cur->val << " ";
    15             cur = cur->right;
    16         }
    17     }
    18 }
    复制代码

    Morris方法:

    和先序遍历的过程类似,只不过输出结点的位置不一样,中序遍历是在2.b中,也就是前驱结点的右孩子为当前结点时,即当前结点的左子树都已经遍历完成时,输出当前结点;

    复制代码
     1 void inOrderMorris(TreeNode *root) {
     2     if (!root)
     3         return;
     4     TreeNode* cur = root;
     5     TreeNode* pre = NULL;
     6     while (cur) {
     7         if (cur->left == NULL) {
     8             cout << cur->val << " ";
     9             cur = cur->right;
    10         }
    11         else {
    12             pre = cur->left;
    13             while (pre->right != NULL && pre->right != cur)
    14                 pre = pre->right;
    15             if (pre->right == NULL) {
    16                 pre->right = cur;
    17                 cur = cur->left;
    18             }
    19             else {
    20                 cout << cur->val << " ";
    21                 pre->right = NULL;
    22                 cur = cur->right;
    23             }
    24         }
    25     }
    26 }
    复制代码

    3.后序遍历:

    递归:

    复制代码
    1 void postOrderRecursive(TreeNode *root) {
    2     if (!root)
    3         return;
    4     postOrderRecursive(root->left);
    5     postOrderRecursive(root->right);
    6     cout << root->val << " ";
    7 }
    复制代码

    迭代:

    后序遍历比先序、中序都要复杂,

    第一种迭代方法,可以用两个栈来模拟递归的遍历;

    栈1初始化时把根节点入栈,

    1.栈1出栈,把出栈的元素加入栈2,然后把该元素的左孩子(如果不为空),右孩子(如果不为空)加入栈1,知道栈1为空;

    2.栈2出栈直到空,每次出栈时输出栈顶元素;

    通过两个栈,保证了栈2中的元素顺序,

    第二种迭代方法,

    用一个结点保存访问过的最后一个结点pre,如果pre为栈顶元素的右孩子,则说明栈顶元素的右子树已经遍历过了,直接输出栈顶元素,并把当前结点设为NULL,并更新pre为出栈的元素;

    1.如果当前结点存在,则一直向左遍历,入栈遍历的元素,直到结点为空;

    2.栈不为空时,出栈,当前结点为栈顶元素,

    如果当前结点的右孩子不为空且不为pre,说明当前结点的右子树没有遍历过,设置当前结点为该节点的右孩子,

    如果右孩子为空或者为pre,直接输出当前结点,更新pre为当前结点,并设当前结点为NULL,

    重复1,2直到当前结点为NULL并且栈为空;

    复制代码
     1 void postOrderIterative(TreeNode *root) {
     2     if (!root) 
     3         return;
     4     stack<TreeNode*> stk;
     5     TreeNode *cur = root;
     6     TreeNode *pre = NULL;
     7     while (cur || !stk.empty()) {
     8         while (cur) {
     9             stk.push(cur);
    10             cur = cur->left;
    11         }
    12         if (!stk.empty()) {
    13             cur = stk.top();
    14             if (cur->right != NULL && cur->right != pre) {
    15                 cur = cur->right;
    16             }
    17             else {
    18                 cout << cur->val << " ";
    19                 pre = cur;
    20                 stk.pop();
    21                 cur = NULL;
    22             }
    23         }
    24     }
    25 }
    26 /*
    27  * 双栈法
    28  */
    29 void postOrderIterative1(TreeNode *root) {
    30     if (!root) 
    31         return;
    32     stack<TreeNode*> stk1, stk2;
    33     TreeNode *cur;
    34     stk1.push(root);
    35     while (!stk1.empty()) {
    36         cur = stk1.top();
    37         stk1.pop();
    38         stk2.push(cur);
    39         if (cur->left)
    40             stk1.push(cur->left);
    41         if (cur->right)
    42             stk1.push(cur->right);
    43     }
    44     while (!stk2.empty()) {
    45         cout << stk2.top()->val << " ";
    46         stk2.pop();
    47     }
    48 }
    复制代码

    Morris方法:

    morris方法的后序遍历较为复杂,因为需要逆序输出右孩子到父亲结点;

    遍历过程与先序与中序类似,

    当前驱结点的右孩子为当前结点时,左子树已经遍历完成,逆序输出当前结点的左孩子到前驱结点;

    类似于链表的反转,不过反转输出之后,记得要反转回来。

    复制代码
     1 void reverse(TreeNode *begin, TreeNode *end) {
     2     if (begin == end)
     3         return;
     4     TreeNode *pre = begin;
     5     TreeNode *cur = begin->right;
     6     TreeNode *next;
     7     while (pre != end) {
     8         temp = cur->right;
     9         cur->right = pre;
    10         pre = cur;
    11         cur = temp;
    12     }
    13 }
    14 
    15 void traversalReversal(TreeNode *begin, TreeNode *end) {
    16     reverse(begin, end);
    17     TreeNode *it = end;
    18     while (true) {
    19         cout << it->val << " ";
    20         if (it == begin)
    21             break;
    22         it = it->right;
    23     }
    24     reverse(end, begin);
    25 }
    26 
    27 void postOrderMorris(TreeNode *root) {
    28     if (!root)
    29         return;
    30     TreeNode dump(0);
    31     dump.left = root;
    32     TreeNode *cur = &dump;
    33     TreeNode *pre = NULL;
    34     while (cur) {
    35         if (cur->left == NULL) {
    36             cur = cur->right;
    37         }
    38         else {
    39             pre = cur->left;
    40             while (pre->right != NULL && pre->right != cur)
    41                 pre = pre->right;
    42             if (pre->right == NULL) {
    43                 pre->right = cur;
    44                 cur = cur->left;
    45             }
    46             else {
    47                 traversalReverse(cur->left, pre);
    48                 pre->right = NULL;
    49                 cur = cur->right;
    50             }
    51         }
    52     }
    53 }
    复制代码

     参考:

    http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html

    http://blog.csdn.net/hackbuteer1/article/details/6583988

     
     
     
  • 相关阅读:
    【零基础】极星9.5量化入门二:滚动止盈策略
    【零基础】极星9.5量化入门零:简单的开始
    今天分享下移动端rem 适配
    css超出内容省略号代替。
    今天给大家的小知识点是JS的一种排序方式---快速排序
    highcharts 的基本使用
    zTree jquery-zTree的基本使用
    克隆 JS克隆
    JS判断一个对象是不是数组的几种方式
    js 定时器实现倒计时
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/3345677.html
Copyright © 2011-2022 走看看