题解:
高消模$7$。
代码:
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 305; template<typename T> inline void read(T&x) { T f = 1,c = 0;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();} x = f*c; } int n,m,k,a[N][N]; char s[10]; int get() { scanf("%s",s); switch (s[2]) { case 'E':return 2; case 'D':return 3; case 'U':return 4; case 'I':return 5; case 'T':return 6; } switch (s[0]) { case 'M':return 1; default :return 7; } } int inv[10]={0,1,4,5,2,3,6}; int gs() { int l1,l2; for(l1=l2=1;l1<=m&&l2<=n;l1++,l2++) { int tmp = l1; while(tmp<=m&&!a[tmp][l2])tmp++; if(tmp>m){l1--;continue;} if(tmp!=l1) for(int j=l2;j<=n+1;j++)swap(a[l1][j],a[tmp][j]); int now = inv[a[l1][l2]]; for(int i=l2;i<=n+1;i++) a[l1][i]=a[l1][i]*now%7; for(int i=l1+1;i<=m;i++) { now = a[i][l2]; for(int j=l2;j<=n+1;j++) a[i][j]=(a[i][j]-now*a[l1][j]%7+7)%7; } } for(int i=l1;i<=m;i++) if(a[i][n+1])return -1; for(int i=n;i>=1;i--) for(int j=i-1;j>=1;j--) a[j][n+1]=(a[j][n+1]-a[i][n+1]*a[j][i]%7+7)%7; return n-l1+1; } int main() { // freopen("tt.in","r",stdin); while(1) { read(n),read(m); if(!n&&!m)break; memset(a,0,sizeof(a)); for(int x,i=1;i<=m;i++) { read(k); int fr = get(); int to = get(); a[i][n+1]=-fr+to+1; if(a[i][n+1]<0)a[i][n+1]+=7; if(a[i][n+1]>6)a[i][n+1]-=7; while(k--) { read(x); a[i][x]++; if(a[i][x]==7)a[i][x]=0; } } int k = gs(); if(k==-1)puts("Inconsistent data."); else if(k>0)puts("Multiple solutions."); else { for(int i=1;i<=n;i++) printf("%d ",a[i][n+1]+(a[i][n+1]<3)*7); puts(""); } } return 0; }