zoukankan      html  css  js  c++  java
  • 「NOI 2011」阿狸的打字机 「AC 自动机」「数据结构」

    首先你需要明白,你不能把每个串都一遍遍插入,复杂度不对。

    但是显然,trie树的规模很小。所以我们可以直接边在trie上dfs边插入,代码比较可读:

    void construct(char* s) {
    	int u = 0; 
    	for (int i = 1; s[i]; ++i) {
    		if (s[i] >= 'a' && s[i] <= 'z') {
    			if (!tr[u][s[i] - 'a']) tr[u][s[i] - 'a'] = ++tot, ff[tr[u][s[i] - 'a']] = u;
    			u = tr[u][s[i] - 'a'];
    		} 
    		else if (s[i] == 'B') u = ff[u]; // 撤销一个字符,也就是往父亲跳一格
    		else if (s[i] == 'P') end_pos[++sz] = u; // 存储每个串的结尾位置
    	}
    }
    

    然后把AC自动机建出来这题就很显然了。

    也就是说,X在Y内出现了多少次,等价于在fail树上X的子树内有多少个Y经过的节点。

    这个Y经过的节点也可以按dfs的顺序来,进来的时候+1,出去的时候-1,这样就可以离线存询问然后用树状数组维护dfs序就行了。

    代码很好理解,只是一开始getfail写错了自闭了半天...

    #include <bits/stdc++.h>
    
    #define test(...) fprintf(stderr, __VA_ARGS__)
    #define dbg(x) cerr << #x << " = " << x << '
    '
    
    using namespace std;
    
    typedef long long ll;
    typedef pair <int, int> pii;
    typedef vector <int> vi;
    typedef unsigned int ui;
    typedef vector <pair <int, int> > edges;
    const int N = 100000 + 10; 
    int n, m;
    char s[N];
    int tr[N][26], ff[N], fail[N], tot, end_pos[N], sz, answer[N];
    vi g[N];
    vector <pii> queries[N];
    void construct(char* s) {
    	int u = 0; 
    	for (int i = 1; s[i]; ++i) {
    		if (s[i] >= 'a' && s[i] <= 'z') {
    			if (!tr[u][s[i] - 'a']) tr[u][s[i] - 'a'] = ++tot, ff[tr[u][s[i] - 'a']] = u;
    			u = tr[u][s[i] - 'a'];
    		} 
    		else if (s[i] == 'B') u = ff[u];
    		else if (s[i] == 'P') end_pos[++sz] = u;
    	}
    }
    void get_fail() {
    	queue <int> q;
    	for (int i = 0; i < 26; ++i)
    		if (tr[0][i]) q.push(tr[0][i]);
    	while (!q.empty()) {
    		int u = q.front();
    		q.pop();
    		for (int i = 0; i < 26; ++i) {
    			if (tr[u][i]) fail[tr[u][i]] = tr[fail[u]][i], q.push(tr[u][i]);
    			else tr[u][i] = tr[fail[u]][i];
    		}
    	}
    	for (int i = 1; i <= tot; ++i) {
    		g[fail[i]].push_back(i), g[i].push_back(fail[i]);
    	}
    }
    int c[N], L[N], R[N], cc;
    void upd(int x, int val) {
    	for(; x <= cc; x += (x & -x)) c[x] += val;
    }
    int range(int l, int r) {
    	int ans = 0;
    	for (; r; r -= (r & -r)) ans += c[r];
    	--l; 
    	for (; l; l -= (l & -l)) ans -= c[l];
    	return ans;
    }
    void dfs(int u, int pre) {
    	L[u] = ++cc;
    	for (int i = 0; i < (int)g[u].size(); i++) if (g[u][i] != pre) dfs(g[u][i], u);
    	R[u] = cc; 
    }
    void get_ans(char* s) {
    	int nowsz = 0, u = 0;
    	for (int i = 1; s[i]; ++i) {
    		if (s[i] >= 'a' && s[i] <= 'z')
    			upd(L[tr[u][s[i] - 'a']], 1), u = tr[u][s[i] - 'a'];
    		else if (s[i] == 'B') {
    			upd(L[u], -1);
    			u = ff[u];
    		} else if (s[i] == 'P') {
    			++nowsz;
    			for (int i = 0; i < (int)queries[nowsz].size(); ++i) {
    				int u = queries[nowsz][i].first, id = queries[nowsz][i].second;
    				answer[id] = range(L[end_pos[u]], R[end_pos[u]]);
    			}
    		}
    	}
    }
    void solve() {
    	scanf ("%s", s + 1);
    	construct(s);
    	get_fail();
    	scanf ("%d", &m);
    	for (int i = 1; i <= m; ++i) {
    		int x, y;
    		scanf ("%d%d", &x, &y);
    		queries[y].push_back({x, i});
    	}
    	dfs(0, 0);
    //	dbg(cc); dbg(tot);
    	get_ans(s);
    	for (int i = 1; i <= m; ++i) 
    		printf("%d
    ", answer[i]); 
    }
    
    int main() {
    #ifdef LOCAL
    	freopen("sample.in", "r", stdin);
    	freopen("test.out", "w", stdout);
    #endif
      int tests = 1;
      while (tests--) solve();
      return 0;
    }
    
  • 相关阅读:
    Liberty Mutual Property Inspection, Winner's Interview: Qingchen Wang
    均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)
    Comparing Differently Trained Models
    Stochastic Optimization Techniques
    Here’s just a fraction of what you can do with linear algebra
    14种机器学习常见算法分类汇总
    高速充电技术介绍
    javacc学习总结
    组合查询(机房重构知识点总结)
    Linux下vi编辑器的使用
  • 原文地址:https://www.cnblogs.com/LiM-817/p/12344462.html
Copyright © 2011-2022 走看看