zoukankan      html  css  js  c++  java
  • [LeetCode][JavaScript]Maximum Subarray

    Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

    For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
    the contiguous subarray [4,−1,2,1] has the largest sum = 6.

    https://leetcode.com/problems/maximum-subarray/

     

     


     

     

    找出和最大的子串。

    动态规划 ,维护一个变量previous,记录之前的最大值。

    当前的最大值就是Math.max(previous + nums[i], nums[i])。

     

     1 /**
     2  * @param {number[]} nums
     3  * @return {number}
     4  */
     5 var maxSubArray = function(nums) {
     6     if(nums.length === 0) return 0;
     7     var previous = Math.max(0, nums[0]), max = nums[0];
     8     for(var i = 1; i < nums.length; i++){
     9         previous = Math.max(previous + nums[i], nums[i]);
    10         max = Math.max(previous, max);
    11     }
    12     return max;
    13 };

     

     

    一开始写的比较啰嗦。

    动态规划,到当前index的子串的最大值可能有三种情况:

    1. 当前元素的,nums[i]

    2. nums[i] + 包括了上一个元素nums[i - 1]的最大子串的和

    3. nums[i] + 上一个元素nums[i - 1]之前的最大值(不包括nums[i - 1]) + nums[i - 1]

     

     1 /**
     2  * @param {number[]} nums
     3  * @return {number}
     4  */
     5 var maxSubArray = function(nums) {
     6     if(nums.length === 0) return 0;
     7     var dp = [], max = nums[0], previous, current;
     8     dp[0] = {previous : 0, current: nums[0]};
     9     for(var i = 1; i < nums.length; i++){
    10         previous = dp[i - 1].current;
    11         current = Math.max(nums[i], nums[i] + dp[i - 1].current,
    12             nums[i] + nums[i - 1] + dp[i - 1].previous);
    13         dp[i] = {previous : previous, current: current};
    14         max = Math.max(current, max);
    15     }
    16     return max;
    17 };

     

  • 相关阅读:
    p1297
    p2023
    p1612
    逆元总结
    p1652
    考试总结10-08
    p1459
    p1821
    p1863
    p1884
  • 原文地址:https://www.cnblogs.com/Liok3187/p/5327134.html
Copyright © 2011-2022 走看看