zoukankan      html  css  js  c++  java
  • 决策单调性优化DP

    可能需要莽一莽

    大佬说是那就是,不狡辩

    目录:

    决策单调性的概念

    四边形不等式 + 从四边形不等式到决策单调性

    解决一维决策单调问题

    (之前的部分在论证理论正确性;如果功利一点、只想解决问题的话,直接从上一部分的最后开始看就行了

    一些题目


    ~ 决策单调性的概念 ~

    假如对于某一个dp方程,$dp(i)$的最优转移是$dp(k)$,那么称$k$为$i$的决策点

    而dp方程满足决策单调性指的是,决策点$k$随着$i$的增大保持单调不减(二维的情况稍微复杂一点,见下面的四边形不等式推决策单调性)

    感觉有点类似斜率优化?

    我们维护的下凸包,斜率也满足单调不减;所以如果斜率不等式的右侧是单调不减的(即决策时只需要向栈顶走、不需要在栈中二分),那么决策点也是单调不减的

    所以绝大多数的斜率优化也满足决策单调性


    ~ 四边形不等式 ~

    一维状态dp的决策单调性比较直观,二维状态的就没那么显然了;需要借助其他的东西进行分析

    而四边形不等式正是推出决策单调性的有力工具(虽然最后判断决策单调性都是打表)

    四边形不等式一般满足这样的格式:

    对于函数$f$和$forall a,b,c,d$,且$a<b<c<d$,有

    [f(a,c)+f(b,d)leq f(a,d)+f(b,c)]

    即 相交区间之和 $leq$ 包含区间之和,那么函数$f$满足四边形不等式

    ~ 四边形不等式到决策单调性 ~

    拿一道具体的题目来说明吧

    比如:Luogu P1880 (石子合并,$NOI1995$)

    这道题目中,求最小得分满足决策单调性;最大得分却不满足(打表看出来的,没有证出来...)

    计算最小得分,可以通过以下dp方程解决:记$dp(i,j)$表示将第$i ext{~}j$堆合并到一起的最小得分,$w(i,j)$表示第$i ext{~}j$堆的石子总数

    则有$dp(i,j)=min{dp(i,k)+dp(k+1,j)+w(i,j)}$,其中$i<j$

    一般来说,利用四边形不等式证明决策单调性的步骤大概是:

       1. 证明$w(i,j)$满足四边形不等式

       2. 证明$dp(i,j)$满足四边形不等式

       3. 证明$dp(i,j)$满足决策单调性

    1. 证明$w(i,j)$满足四边形不等式,即$w(i,j)+w(i+1,j+1)leq w(i,j+1)+w(i+1,j)$

    通过简单的求和即可证明,上述不等式恒取等号

    2. 证明$dp(i,j)$满足四边形不等式,即$dp(i,j)+dp(i+1,j+1)leq dp(i,j+1)+dp(i+1,j)$

    这个我实在没证出来...听说可能可以用归纳法

    3. 由$w(i,j),dp(i,j)$满足四边形不等式,推出$dp(i,j)$满足决策单调性

    若记$dp(i,j)$由$s(i,j)=k$转移而来,$dp(i,j)$满足决策单调性就是指$s(i,j)$满足$s(i,j-1)leq s(i,j)leq s(i+1,j)$

    先用反证法证明$s(i,j-1)leq s(i,j)$

    设$dp(i,j-1)$的最优转移为$x$,$dp(i,j)$的最优转移为$y$,且$y<x$,则有

    egin{align*}dp(i,j-1)&=dp_{k=x}(i,j-1)=dp(i,x)+dp(x+1,j-1)+w(i,j-1)\ &leq dp_{k=y}(i,j-1)=dp(i,y)+dp(y+1,j-1)+w(i,j-1)end{align*}

    egin{align*}dp(i,j)&=dp_{k=y}(i,j)=dp(i,y)+dp(y+1,j)+w(i,j)\ &leq dp_{k=x}(i,j)=dp(i,x)+dp(x+1,j)+w(i,j)end{align*}

    由于$dp(i,j)$满足四边形不等式,于是有

    [dp(y+1,j-1)+dp(x+1,j)leq dp(y+1,j)+dp(x+1,j-1)]

    对等式左右两边都加上$dp(i,x)+dp(i,y)+w(i,j-1)+w(i,j)$,得

    egin{align*} ext{左式}&=dp(i,y)+dp(y+1,j-1)+w(i,j-1)+dp(i,x)+dp(x+1,j)+w(i,j)\ &=dp_{k=y}(i,j-1)+dp_{k=x}(i,j)end{align*}

    egin{align*} ext{右式}&=dp(i,y)+dp(y+1,j)+w(i,j)+dp(i,x)+dp(x+1,j-1)+w(i,j-1)\ &=dp_{k=y}(i,j)+dp_{k=x}(i,j-1)end{align*}

    于是有

    [dp_{k=y}(i,j-1)+dp_{k=x}(i,j)leq dp_{k=y}(i,j)+dp_{k=x}(i,j-1)]

    在条件中,右式为$dp(i-1),dp(j)$的最优转移,应当比左式小,推出矛盾

    于是,有$ygeq x$,即$s(i,j-1)leq s(i,j)$

    类似的,也可以用完全相同的方法反证得出$s(i,j)leq s(i+1,j)$

    (四边形不等式为$dp(i,y)+dp(i+1,x)leq dp(i,x)+dp(i+1,y)$,左右两边都加上$dp(x+1,j)+dp(y+1,j)+w(i,j)+w(i+1,j)$)

    由决策单调性,$s(i,j)$的大致情况就可以确定了

    首先,$s(i,j)$是一个$n imes n$的上三角形

    由于$s(i,j-1)leq s(i,j)$,所以每一行从左到右都是单调不减的

    又因为$s(i,j)leq s(i+1,j)$,所以每一列从上到下也是单调不减的

    然后考虑dp的顺序,由于$s(i,j-1)leq s(i,j)leq s(i+1,j)$,所以如果已知$s(i,j-1),s(i+1,j)$,那么$s(i,j)$的范围就会被限制住

    所以dp的顺序应该是,外层$i$从大到小,内层$j$从小到大

    这样一来可以计算整体的复杂度:

    由于$s(i,j)$的范围被$s(i,j-1),s(i+1,j)$所限制,那么总的枚举次数就是$sum_{i=1}^{n} sum_{j=i}^{n} (s(i+1,j)-s(i,j-1))$,也就是时间复杂度

    将括号内提出来,就是$sum_{i=1}^{n} sum_{j=i}^{n} s(i+1,j)-sum_{i=1}^{n} sum_{j=i}^{n} s(i,j-1)$,其中

    [sum_{i=1}^{n}sum_{j=1}^{n}s(i+1,j)leq sum_{i=2}^{n}sum_{j=i}^{n}s(i,j)+2n^2]

    [sum_{i=1}^{n}sum_{j=1}^{n}s(i,j-1)geq sum_{i=1}^{n-1}sum_{j=i}^{n-1}s(i,j)]

    于是就能得到

    egin{align*}&sum_{i=1}^{n} sum_{j=i}^{n} s(i+1,j)-sum_{i=1}^{n} sum_{j=i}^{n} s(i,j-1)\ leq &sum_{i=2}^{n}sum_{j=i}^{n}s(i,j)+2n^2-sum_{i=1}^{n-1}sum_{j=i}^{n-1}s(i,j)\ leq &sum_{i=1}^{n} s(i,n)+2n^2\ leq & 3n^2end{align*}

    所以这种方法的时间复杂度为$O(n^2)$

    这里就不写环状的了,反正只是把$a_i$再复制一份而已

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    const int N=1005;
    const int INF=1<<30;
    
    int n;
    int a[N],pre[N];
    
    int s[N][N];
    int dp[N][N];
    
    int main()
    {
    //    freopen("input.txt","r",stdin);
    //    freopen("my.txt","w",stdout);
        
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]),pre[i]=pre[i-1]+a[i];
        
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                dp[i][j]=INF;
        for(int i=1;i<=n;i++)
            s[i][i]=i,dp[i][i]=0;
        
        for(int i=n-1;i>=1;i--)
            for(int j=i+1;j<=n;j++)
                for(int k=s[i][j-1];k<=s[i+1][j];k++)
                {
                    int val=dp[i][k]+dp[k+1][j]+pre[j]-pre[i-1];
                    if(val<dp[i][j])
                    {
                        s[i][j]=k;
                        dp[i][j]=val;
                    }
                }
        
        printf("%d
    ",dp[1][n]);
        return 0;
    }
    View Code

    附上数据生成器(虽然十分简单...)

    #include <ctime>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    int rnd(int lim)
    {
        return (rand()*rand()+rand()-1)%lim+1;
    }
    
    int main()
    {
        freopen("input.txt","w",stdout);
        srand(time(NULL));
        
        int n=205;
        printf("%d
    ",n);
        
        for(int i=1;i<=n;i++)
            printf("%d ",rnd(1000));
        return 0;
    }
    View Code

    ~ 解决一维决策单调问题 ~

    解决(其实只是初步了解)了四边形不等式之后,就来处理一下更常见的一维决策单调性问题吧

    继续拉来斜率优化的例题:HDU 3507 ($Print Article$)

    令$S(i)=sum_{i=1}^{i} C_i$,则dp方程为$dp(i)=min{dp(j)+(S(i)-S(j))^2}+M$

    我们可以令$w(j,i)=(S(i)-S(j))^2$,那么可以证明$w(j,i)$满足四边形不等式

    若令$a<b<c<d$,则有

    egin{align*}w(a,c)+w(b,d)=&((S(c)-S(a))^2+((S(d)-S(b))^2\ =&S(a)^2+S(b)^2+S(c)^2+S(d)^2-2S(a)S(c)-2S(b)S(d)end{align*}

    egin{align*}w(a,d)+w(b,c)=&((S(d)-S(a))^2+((S(c)-S(b))^2\ =&S(a)^2+S(b)^2+S(c)^2+S(d)^2-2S(a)S(d)-2S(b)S(c)end{align*}

    由排序不等式的乱序和大于逆序和,有

    [S(a)S(c)+S(b)S(d)+S(c)S(a)+S(d)S(b)geq S(a)S(d)+S(b)S(c)+S(c)S(b)+S(d)S(a)]

    所以$w(a,c)+w(b,d)leq w(a,d)+w(b,c)$

    再用类似石子合并的反证法证明决策单调性:

    令$dp(i)$的最优转移为$x$,$dp(i+1)$的最优转移为$y$,且$y<x$,则有

    egin{align*}dp(i)&=dp_{j=x}(i)=dp(x)+w(x,i)+M\ &leq dp_{j=y}(i)=dp(y)+w(y,i)+Mend{align*}

    egin{align*}dp(i+1)&=dp_{j=y}(i+1)=dp(y)+w(x,i+1)+M\ &leq dp_{j=x}(i+1)=dp(x)+w(x,i+1)+Mend{align*}

    于是构造四边形不等式$w(y,i)+w(x,i+1)leq w(y,i+1)+w(x,i)$,并在左右两边都加上$dp(x)+dp(j)+2M$,那么

    egin{align*} ext{左式}&=dp(x)+w(x,i+1)+M+dp(y)+w(y,i)+M\ &=dp_{j=x}(i+1)+dp_{j=y}(i)end{align*}

    egin{align*} ext{右式}&=dp(x)+w(x,i)+M+dp(y)+w(y,i+1)+M\ &=dp_{j=x}(i)+dp_{j=y}(i+1)end{align*}

    根据条件,右式为$dp(i),dp(j)$的最优转移,应当比左式小,于是推出矛盾

    所以$dp(i)$满足决策单调性

    这样看来,只要证明转移的差值$w(i,j)$满足四边形不等式,就能证出一维dp的决策单调性;这个还是比较方便的

    虽然上面的内容能够证明某个dp方程是否满足决策单调性,但是离具体的实现还有点差距

    学习了这篇的实现方法,讲的很好:ReMoon - 关于决策单调性优化动态规划

    根据dalao的文章,一共有两种可能的情况:1. 被决策点不会成为决策点;2. 被决策点可能会成为决策点

    1. 被决策点不会成为决策点

    一般的遇到这种情况时,dp方程有两维

    比如,$dp(i,j)$表示在第$i$个阶段、对$j$做决策;$dp(i,j)$由$dp(i-1,k)$转移得来

    这种情况下,$dp(i,j)$不会成为$dp(i,j')$的决策点(因为必须从第$i-1$阶段转移),所以可以比较简单地处理

    //l,r: 被决策点的下/上界
    //L,R: 决策点的下/上界 
    void Solve(int i,int l,int r,int L,int R)
    {
        if(l>r)
            return;
        
    //    mid: [l,r]中二分被决策点
    //    pos: mid的决策点 
        int pos=-1,mid=(l+r)>>1;
        for(int j=L;j<=min(mid-1,R);j++)
        {
            int val=dp[i-1][j]+w(j,mid);
            if(val<dp[i][mid])
                dp[i][mid]=val,pos=j;
        }
        
        Solve(i,l,mid-1,L,pos);
        Solve(i,mid+1,r,pos,R);
    }

    分析一下时间复杂度

    我们在每层递归中,都将当前区间$[l,r]$分成长度相等的两部分$[l,mid-1],[mid+1,r]$,这两部分的被决策点范围为$[L,pos],[pos,R]$

    那么在下一层递归中,枚举被决策点的次数就是$(R-pos+1)+(pos-L+1)=R-L+2$

    于是在每一层中枚举的次数是$n$级别的,一共递归$logn$层,所以总的复杂度为$O(ncdot logn)$

    例题:牛客ACM 890J ($Wood Processing$,$2019$牛客暑期多校第十场)

    把所有木板按高度排序后,记$dp(i,j)$表示,第$i$次切木板、切到第$j$块时,浪费的最小面积;$w(i,j)$表示从第$i$到第$j$为一块所要浪费的面积

    那么$dp(i,j)=min{dp(i-1,k)+w(k+1,j)},w(i,j)=sum_{k=i}^{j}(W_kcdot H_k)-H_icdot sum_{k=i}^{j}W_k$

    很容易证得$w(i,j)$满足四边形不等式($sum (W_kcdot H_k)$能消去,之后就很显然了),于是也满足决策单调性,套用上面的递归即可

    #include <cstdio>
    #include <vector>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef pair<int,int> pii;
    typedef long long ll;
    const int N=5005;
    const int K=2005;
    const ll INF=1LL<<60;
    
    int n,k;
    pii a[N];
    ll sum[N],W[N];
    
    ll dp[K][N];
    
    inline ll w(int i,int j)
    {
        return sum[j]-sum[i-1]-ll(a[i].first)*(W[j]-W[i-1]);
    }
    
    void Solve(int i,int l,int r,int L,int R)
    {
        if(l>r)
            return;
        
        int pos=-1,mid=(l+r)>>1;
        for(int j=L;j<=min(mid-1,R);j++)
        {
            ll val=dp[i-1][j]+w(j+1,mid);
            if(val<dp[i][mid])
                dp[i][mid]=val,pos=j;
        }
        
        Solve(i,l,mid-1,L,pos);
        Solve(i,mid+1,r,pos,R);
    }
    
    int main()
    {
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)
            scanf("%d%d",&a[i].second,&a[i].first);
        
        sort(a+1,a+n+1);
        
        for(int i=1;i<=n;i++)
        {
            sum[i]=sum[i-1]+ll(a[i].first)*a[i].second;
            W[i]=W[i-1]+a[i].second;
        }
        
        for(int i=0;i<=k;i++)
            for(int j=0;j<=n;j++)
                dp[i][j]=INF;
        dp[0][0]=0;
        
        for(int i=1;i<=k;i++)
            Solve(i,1,n,0,n-1);
        
        printf("%lld
    ",dp[k][n]);
        return 0;
    }
    View Code

    2. 被决策点可能会成为决策点

    也有不少dp方程属于这种情况,比如上面举的$Print Article$

    由于被决策点会成为后续点的决策点,于是在计算$dp(i)$时,它的决策点$j$的值$dp(j)$是未被计算的,所以并不能采用上面的整体二分

    因为决策点必然是需要被提前计算的,所以从左向右dp,不过在这个过程中多维护一些信息

    我们考虑对于每个被决策点,其决策点的变化过程

    (1). 在初始情况下,每个点都由$0$转移来,于是决策点数列为$0,0,0,...,0$

    (2). 假设对于被决策点$i$,由$1$转移比由$0$转移来的更优

          那么根据决策单调性,$i+1,i+2,i+3,...$的决策点也不小于$1$,于是对于它们来说从$1$转移也比从$0$更优

          此时决策点数列为$0,0,...,0,1,1,...,1$,可以发现$1$的出现位置满足单调性,所以可以二分得出$1$的最早出现位置

    (3). 类似的,对于从$2$转移的情况,也是覆盖了一段$[j,n]$的决策点区间,其中$j$可以二分得到($j$有可能小于$1$的最早出现位置$i$,即$2$彻底覆盖$1$)

          以此类推

    于是考虑维护一个栈来保存决策点$x$的最早出现位置

    //cur: 当前栈指针  top: 栈顶指针
    int cur,top;
    //pos: 决策点对应的最小被决策点  from: 决策点
    int pos[N],from[N];
    ll dp[N];
    
    //找到以i作为决策点的最小被决策点(与栈顶的决策点相比即可)
    inline int Find(int i)
    {
        int l=i+1,r=n+1,mid;//l=pos[top]也可以,因为在Solve()中已经弹出过会被覆盖的决策点了
        while(l<r)
        {
            mid=(l+r)>>1;
            if(dp[from[top]]+w(from[top],mid)>dp[i]+w(i,mid))
                r=mid;
            else
                l=mid+1;
        }
        return l;
    }
    
    void Solve()
    {
        cur=top=0;
        for(int i=1;i<=n;i++)
        {
            if(cur<top && pos[cur+1]==i)
                cur++;
            dp[i]=dp[from[cur]]+w(from[cur],i);
            
    //        当i的决策区间能完全覆盖栈顶决策点的决策区间
            while(top>cur && dp[from[top]]+w(from[top],pos[top])>dp[i]+w(i,pos[top]))
                top--;
            int to=Find(i);
            if(to<=n)
                ++top,pos[top]=to,from[top]=i;
        }
    }

    这道题接下来就没什么了

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef long long ll;
    const int N=500005;
    
    int n,M;
    ll a[N],sum[N];
    
    inline ll w(int i,int j)
    {
        return (sum[j]-sum[i])*(sum[j]-sum[i])+M;
    }
    
    int cur,top;
    int pos[N],from[N];
    ll dp[N];
    
    inline int Find(int i)
    {
        int l=i+1,r=n+1,mid;
        while(l<r)
        {
            mid=(l+r)>>1;
            if(dp[from[top]]+w(from[top],mid)>dp[i]+w(i,mid))
                r=mid;
            else
                l=mid+1;
        }
        return l;
    }
    
    void Solve()
    {
        cur=top=0;
        for(int i=1;i<=n;i++)
        {
            if(cur<top && pos[cur+1]==i)
                cur++;
            dp[i]=dp[from[cur]]+w(from[cur],i);
            
            while(top>cur && dp[from[top]]+w(from[top],pos[top])>dp[i]+w(i,pos[top]))
                top--;
            int to=Find(i);
            if(to<=n)
                ++top,pos[top]=to,from[top]=i;
        }
    }
    
    int main()
    {
        while(~scanf("%d%d",&n,&M))
        {
            for(int i=1;i<=n;i++)
                scanf("%lld",&a[i]),sum[i]=sum[i-1]+a[i];
            
            Solve();
            
            printf("%lld
    ",dp[n]);
        }
        return 0;
    }
    View Code

    ~ 一些题目 ~

    CF 868F ($Yet Another Minimization Problem$)

    很明显属于被决策点不会成为决策点的情况,但是比较tricky的是$w(i,j)$没有办法预处理

    可以采用two pointers用类似莫队的方法计算$w(i,j)$

    由于每一次查询$w(i,j)$时,$i,j$最多移动$R-L+1$次,所以总的复杂度也是$O(ncdot logn)$

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef long long ll;
    const ll INF=1LL<<60;
    const int N=100005;
    const int K=22;
    
    int n,k;
    int a[N];
    
    ll dp[K][N];
    int cnt[N];
    
    ll res;
    int wl=1,wr=0;
    
    inline ll w(int i,int j)
    {
        while(wl<i)
        {
            cnt[a[wl]]--;
            res-=cnt[a[wl]];
            wl++;
        }
        while(wl>i)
        {
            wl--;
            res+=cnt[a[wl]];
            cnt[a[wl]]++;
        }
        while(wr<j)
        {
            wr++;
            res+=cnt[a[wr]];
            cnt[a[wr]]++;
        }
        while(wr>j)
        {
            cnt[a[wr]]--;
            res-=cnt[a[wr]];
            wr--;
        }
        return res;
    }
    
    void Solve(int i,int l,int r,int L,int R)
    {
        if(l>r)
            return;
        
        int pos=-1,mid=(l+r)>>1;
        for(int j=L;j<=min(mid-1,R);j++)
            if(dp[i][mid]>dp[i-1][j]+w(j+1,mid))
            {
                dp[i][mid]=dp[i-1][j]+w(j+1,mid);
                pos=j;
            }
        
        Solve(i,l,mid-1,L,pos);
        Solve(i,mid+1,r,pos,R);
    }
    
    int main()
    {
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        
        for(int i=0;i<=k;i++)
            for(int j=0;j<=n;j++)
                dp[i][j]=INF;
        dp[0][0]=0;
        
        for(int i=1;i<=k;i++)
            Solve(i,1,n,0,n-1);
        
        printf("%lld
    ",dp[k][n]);
        return 0;
    }
    View Code

    BZOJ 5125 (小$Q$的书架)

    首先证明一下转移权值$w(i,j)$满足四边形不等式:

    由于区间排序 交换相邻元素次数 等于 逆序对个数,所以$w(i,j)= ext{区间}[i,j] ext{中逆序对个数}$

    令$a<b<c<d$,即证明$w(a,c)+w(b,d)leq w(a,d)+w(b,c)$

    对于区间来说,$[a,c]=[a,b)+[b,c],[b,d]=[b,c]+(c,d],[a,d]=[a,b)+[b,c]+(c,d]$;由于区间$[a,d]$中,$[a,b),(c,d]$间还会贡献逆序对数,所以上面的四边形不等式显然成立

    然后考虑如何计算$w(i,j)$:

    由于无法预处理,所以可以采用上题一样的two pointers

    但是加入/删除一个元素时逆序对的变化肯定是无法$O(1)$做到的,于是可以考虑用树状数组维护每个编号是否出现

    若将左指针$wl$左移,逆序对数就加上$[wl,wr]$中$a_i<a_{wl}$的个数;若将右指针$wr$右移,逆序对数就加上$[wl,wr]$中$a_i>a_{wr}$的个数;删除类似

    于是可以$O(ncdot log^2n)$解决

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef long long ll;
    const ll INF=1LL<<60;
    const int N=40005;
    const int K=11;
    
    
    int n,k;
    int a[N];
    
    int t[N<<1];
    
    inline void Modify(int k,int x)
    {
        for(int i=k;i<=n;i+=(i&(-i)))
            t[i]+=x;
    }
    
    inline int Query(int k)
    {
        int res=0;
        for(int i=k;i;i-=(i&(-i)))
            res+=t[i];
        return res;
    }
    
    int wl,wr;
    ll res;
    
    inline ll w(int i,int j)
    {
        while(wl<i)
        {
            res-=Query(a[wl]-1);
            Modify(a[wl],-1);
            wl++;
        }
        while(wl>i)
        {
            wl--;
            res+=Query(a[wl]-1);
            Modify(a[wl],1);
        }
        while(wr<j)
        {
            wr++;
            res+=Query(n)-Query(a[wr]);
            Modify(a[wr],1);
        }
        while(wr>j)
        {
            res-=Query(n)-Query(a[wr]);
            Modify(a[wr],-1);
            wr--;
        }
        return res;
    }
    
    ll dp[K][N];
    
    void Solve(int i,int l,int r,int L,int R)
    {
        if(l>r)
            return;
        
        int pos=-1,mid=(l+r)>>1;
        dp[i][mid]=INF;
        for(int j=L;j<=min(mid-1,R);j++)
            if(dp[i][mid]>dp[i-1][j]+w(j+1,mid))
            {
                dp[i][mid]=dp[i-1][j]+w(j+1,mid);
                pos=j;
            }
        
        Solve(i,l,mid-1,L,pos);
        Solve(i,mid+1,r,pos,R);
    }
    
    void Clear()
    {
        wl=1,wr=0;
        res=0;
        for(int i=1;i<=n;i++)
            t[i]=0;
    }
    
    int main()
    {
        scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        
        for(int i=1;i<=n;i++)
            dp[0][i]=INF;
        
        for(int i=1;i<=k;i++)
        {
            Clear();
            Solve(i,1,n,0,n-1);
        }
        
        printf("%lld
    ",dp[k][n]);
        return 0;
    }
    View Code

    暂时就先这样吧,以后有题慢慢补充

    (完)

  • 相关阅读:
    Xcopy参数介绍
    C# 子窗体中调用父窗体中的方法(或多窗体之间方法调用)
    WinForm窗体之间交互的一些方法(转)
    C#.Net组件开发 使用Attach to Process实时调试设计器代码(转)
    win7以管理员身份运行程序
    如何关闭Windows7的UAC
    用“回车”键代替“Tab”键
    笑话20110928
    项目管理师
    软考计算机技术与软件专业技术资格(水平)考试
  • 原文地址:https://www.cnblogs.com/LiuRunky/p/Decision_Monotonicity_Optimized_DP.html
Copyright © 2011-2022 走看看