zoukankan      html  css  js  c++  java
  • TensorFlow的模型保存与加载

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    import tensorflow as tf
    
    #tensorboard --logdir="./"
    
    def linearregression():
    
        with tf.variable_scope("original_data"):
            X = tf.random_normal([100,1],mean=0.0,stddev=1.0)
            y_true = tf.matmul(X,[[0.8]]) + [[0.7]]
    
        with tf.variable_scope("linear_model"):
            weights = tf.Variable(initial_value=tf.random_normal([1,1]))
            bias = tf.Variable(initial_value=tf.random_normal([1,1]))
            y_predict = tf.matmul(X,weights)+bias
    
        with tf.variable_scope("loss"):
            loss = tf.reduce_mean(tf.square(y_predict-y_true))
    
        with tf.variable_scope("optimizer"):
            optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss)
    
        #收集观察张量
        tf.summary.scalar("losses",loss)
        tf.summary.histogram("weight",weights)
        tf.summary.histogram("biases",bias)
        #合并收集的张量
        merge = tf.summary.merge_all()
    
        init = tf.global_variables_initializer()
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(init)
            print(weights.eval(),bias.eval())
            # 模型加载
            saver.restore(sess,"./model/linearregression")
            print(weights.eval(),bias.eval())
            # filewriter = tf.summary.FileWriter("./tmp",graph=sess.graph)
            # for i in range(1000):
            #     sess.run(optimizer)
            #     print("loss:", sess.run(loss))
            #     print("weight:", sess.run(weights))
            #     print("bias:", sess.run(bias))
            #     summary = sess.run(merge)
            #     filewriter.add_summary(summary,i)
            #
            # #checkpoint文件,模型保存
            # saver.save(sess,"./model/linearregression")
    
    if __name__ == '__main__':
        linearregression()
    

      

    多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。
  • 相关阅读:
    论文复现的一些问题
    南京锐士方达猎头可拉黑
    Functional Ruby
    国内访问 Atom 源很慢 & 解决方案
    Linux 的硬链接与软链接
    Python小知识点(持续更新)
    MySQL小知识点(持续更新)
    Iterable Object, Iterator, Generator, Generator Iterator
    setTimeout函数在浏览器中和Node.js中的区别
    Several Python Tools/Utilities
  • 原文地址:https://www.cnblogs.com/LiuXinyu12378/p/12246385.html
Copyright © 2011-2022 走看看