import torch import matplotlib.pyplot as plt learning_rate = 0.1 #准备数据 #y = 3x +0.8 x = torch.randn([500,1]) y_true = 3*x + 0.8 #计算预测值 w = torch.rand([],requires_grad=True) b = torch.tensor(0,dtype=torch.float,requires_grad=True) for i in range(50): #梯度默认会累加,梯度手动清零 for j in [w,b]: if j.grad is not None: j.grad.data.zero_() y_predict = x*w +b #计算损失 loss = (y_predict-y_true).pow(2).mean() loss.backward() #更新参数 w.data = w.data - learning_rate * w.grad b.data = b.data - learning_rate * b.grad print(i,loss.item()) print(w.data,b.data) plt.figure(figsize=(20,8)) plt.scatter(x.numpy(),y_true.numpy()) y_predict = x*w + b plt.plot(x.numpy(),y_predict.detach().numpy(),c="red") plt.show()