import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ["CUDA_DEVICE_ORDER"] = "0,1" mnist = input_data.read_data_sets("MNIST_data",one_hot=True) def compute_accuracy(v_xs,v_ys): global prediction y_pre = sess.run(prediction,feed_dict ={xs:v_xs,keep_prob:1}) correct_predicton = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_predicton,tf.float32)) result = sess.run(accuracy,feed_dict = {xs:v_xs,ys:v_ys,keep_prob:1}) return result def weight_variable(shape): initial = tf.truncated_normal(shape=shape,stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial) def conv2d(x,W): #stride [1,x_movement,y_movement,1] #Must have strides[0] = strides[3] = 1 return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME") def max_pool_2x2(x): # stride [1,x_movement,y_movement,1] return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME") def add_layer(inputs,in_size,out_size,activation_function=None): Weight = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size])+0.1) Wx_plus_b = tf.matmul(inputs,Weight)+biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs #define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,784]) ys = tf.placeholder(tf.float32,[None,10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs,[-1,28,28,1]) ## conv1 layer ## W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32 h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32 ## conv2 layer ## W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64 h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64 # #func1 layer # input = tf.reshape(h_pool2,[-1,7*7*64]) # fc1 = add_layer(input,7*7*64,1024,activation_function=tf.nn.relu) # fc1_drop = tf.nn.dropout(fc1,keep_prob) # # #func2 layer # fc2 = add_layer(fc1_drop,1024,10,activation_function=tf.nn.softmax) # prediction = fc2 ## func1 layer ## W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ## func2 layer ## W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #loss cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy) config = tf.ConfigProto(log_device_placement=True) config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.initialize_all_variables()) for i in range(1000): batch_xs,batch_ys = mnist.train.next_batch(100) sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5}) if i%50 ==0: print(compute_accuracy(mnist.test.images,mnist.test.labels))