zoukankan      html  css  js  c++  java
  • tensorflow1.0 lstm学习曲线

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    BATCH_START = 0
    TIME_STEPS = 20
    BATCH_SIZE = 20
    INPUT_SIZE = 1
    OUTPUT_SIZE = 1
    CELL_SIZE = 10
    LR = 0.0025
    
    
    def get_batch():
        global BATCH_START, TIME_STEPS
        # xs shape (50batch, 20steps)
        xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)
        seq = np.sin(xs)
        res = np.cos(xs)
        BATCH_START += TIME_STEPS
        # plt.plot(xs[0, :], res[0, :], 'r', xs[0, :], seq[0, :], 'b--')
        # plt.show()
        # returned seq, res and xs: shape (batch, step, input)
        return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs]
    
    
    class LSTMRNN(object):
        def __init__(self, n_steps, input_size, output_size, cell_size, batch_size):
            self.n_steps = n_steps
            self.input_size = input_size
            self.output_size = output_size
            self.cell_size = cell_size
            self.batch_size = batch_size
            with tf.name_scope('inputs'):
                self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
                self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')
            with tf.variable_scope('in_hidden'):
                self.add_input_layer()
            with tf.variable_scope('LSTM_cell'):
                self.add_cell()
            with tf.variable_scope('out_hidden'):
                self.add_output_layer()
            with tf.name_scope('cost'):
                self.compute_loss()
            with tf.name_scope('train'):
                self.train_op = tf.train.AdamOptimizer(LR).minimize(self.loss)
    
        def add_input_layer(self,):
            l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D')  # (batch*n_step, in_size)
            # Ws (in_size, cell_size)
            Ws_in = self._weight_variable([self.input_size, self.cell_size])
            # bs (cell_size, )
            bs_in = self._bias_variable([self.cell_size,])
            # l_in_y = (batch * n_steps, cell_size)
            with tf.name_scope('Wx_plus_b'):
                l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in
            # reshape l_in_y ==> (batch, n_steps, cell_size)
            self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D')
    
        def add_cell(self):
            lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
            with tf.name_scope('initial_state'):
                self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
            self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
                lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)
    
        def add_output_layer(self):
            # shape = (batch * steps, cell_size)
            l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D')
            Ws_out = self._weight_variable([self.cell_size, self.output_size])
            bs_out = self._bias_variable([self.output_size, ])
            # shape = (batch * steps, output_size)
            with tf.name_scope('Wx_plus_b'):
                self.pred = tf.matmul(l_out_x, Ws_out) + bs_out
    
        # def compute_cost(self):
        #     losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
        #         [tf.reshape(self.pred, [-1], name='reshape_pred')],
        #         [tf.reshape(self.ys, [-1], name='reshape_target')],
        #         [tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],
        #         average_across_timesteps=True,
        #         softmax_loss_function=self.ms_error,
        #         name='losses'
        #     )
        #     with tf.name_scope('average_cost'):
        #         self.cost = tf.div(
        #             tf.reduce_sum(losses, name='losses_sum'),
        #             self.batch_size,
        #             name='average_cost')
    
        def compute_loss(self):
            prediction = tf.reshape(self.pred, [-1], name='reshape_pred')
            ys = tf.reshape(self.ys, [-1], name='reshape_target')
            self.loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                                    reduction_indices=[0]))
    
    
        @staticmethod
        def ms_error(labels, logits):
            return tf.square(tf.subtract(labels, logits))
    
        def _weight_variable(self, shape, name='weights'):
            initializer = tf.random_normal_initializer(mean=0., stddev=1.,)
            return tf.get_variable(shape=shape, initializer=initializer, name=name)
    
        def _bias_variable(self, shape, name='biases'):
            initializer = tf.constant_initializer(0.1)
            return tf.get_variable(name=name, shape=shape, initializer=initializer)
    
    
    if __name__ == '__main__':
        model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
        sess = tf.Session()
        # tf.initialize_all_variables() no long valid from
        # 2017-03-02 if using tensorflow >= 0.12
        if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
            init = tf.initialize_all_variables()
        else:
            init = tf.global_variables_initializer()
        sess.run(init)
        # relocate to the local dir and run this line to view it on Chrome (http://0.0.0.0:6006/):
        # $ tensorboard --logdir='logs'
        plt.figure(figsize=(12, 4))
        plt.ion()
        plt.show()
        for i in range(300):
            seq, res, xs = get_batch()
            if i == 0:
                feed_dict = {
                        model.xs: seq,
                        model.ys: res,
                        # create initial state
                }
            else:
                feed_dict = {
                    model.xs: seq,
                    model.ys: res,
                    model.cell_init_state: state    # use last state as the initial state for this run
                }
    
            _, cost, state, pred = sess.run(
                [model.train_op, model.loss, model.cell_final_state, model.pred],
                feed_dict=feed_dict)
    
            # plotting
            plt.plot(xs[0, :], seq[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS], 'b--')
            plt.ylim((-1.5, 1.5))
            plt.draw()
            plt.pause(0.1)
    
            if i % 20 == 0:
                print('loss: ', round(cost, 4))
    

      

    多思考也是一种努力,做出正确的分析和选择,因为我们的时间和精力都有限,所以把时间花在更有价值的地方。
  • 相关阅读:
    數據從一個DB寫入另外一個DB
    js 控制下拉菜單的刷新
    Ajax 加載數據庫中的圖片
    Win7 註冊表 刪除登陸帳號
    產生隨機數
    借助AjaxControlToolkit实现百度搜索时的下拉列表提示
    解决"Windows 安装程序不允许从远程桌面连接安装"
    中文转换成数字金额C#【转】
    让你的Visual Studio 2010自动添加头部注释信息【转】
    C# 图片识别(支持21种语言)【转】
  • 原文地址:https://www.cnblogs.com/LiuXinyu12378/p/12499914.html
Copyright © 2011-2022 走看看