zoukankan      html  css  js  c++  java
  • 基于mykernel2.0编写一个操作系统内核

    实验要求

    1. 按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;
    2. 基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码;
    3. 简要分析操作系统内核核心功能及运行工作机制;

    实验环境搭建

      本次实验使用虚拟机Vmware15,Ubuntu18.01操作系统。

      按照如下命令依次执行:

      

    wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install axel
    axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
    xz -d linux-5.4.34.tar.xz
    tar -xvf linux-5.4.34.tar
    cd linux-5.4.34
    patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install build-essential gcc-multilib  libncurses5-dev bison flex libssl-dev libelf-dev
    sudo apt install qemu 
    make defconfig 
    make -j$(nproc)

    在下载mykernel-2.0_for_linux-5.4.34.patch时可能出现无法连接或者拒绝访问的情况,可以修改hosts文件,具体参照这篇博文https://www.cnblogs.com/sinferwu/p/12726833.html

    执行到这里环境基本搭建成功,然后可以启动mykernel进行验证,执行以下代码

    qemu-system-x86_64 -kernel arch/x86/boot/bzImage

    然后出现如下界面:

    可以看到qemu在不停执行,具体我们可以看一下代码:

    可以看出mymain.c中的代码在不停地执⾏。同时有⼀个中断处理程序的上下⽂环境,周期性地产⽣的时钟中断信号,能够触发myinterrupt.c中的代码。

    基于mykernel 2.0编写一个操作系统内核

    在https://github.com/mengning/mykernel网址下载孟宁老师的源码,然后将mypcb.h,myinterrupt.c和mymain.c这三个文件拷贝到mykernel目录下,即要覆盖之前的mykernel文件夹下mymain.c和myinterrupt.c,并新增头文件mypcb.h。

    mypcb.h定义进程控制块

    /*
     *  linux/mykernel/mypcb.h
     *
     *  Kernel internal PCB types
     *
     *  Copyright (C) 2013  Mengning
     *
     */
    
    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long        ip;
        unsigned long        sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long    task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);

    pid:进程号

    state:进程状态,在模拟系统中,所有进程控制块信息都会被创建出来,其初始化值就是-1,如果被调度运行起来,其值就会变成0

    stack:进程使用的堆栈

    thread:当前正在执行的线程信息

    task_entry:进程入口函数

    next:指向下一个PCB,模拟系统中所有的PCB是以链表的形式组织起来的。

    mymain.c:初始化各个进程并启动0号进程

    /*
     *  linux/mykernel/mymain.c
     *
     *  Kernel internal my_start_kernel
     *  Change IA32 to x86-64 arch, 2020/4/26
     *
     *  Copyright (C) 2013, 2020  Mengning
     *  
     */
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movq %1,%%rsp
    	"     /* set task[pid].thread.sp to rsp */
            "pushq %1
    	"             /* push rbp */
            "pushq %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"                 /* pop task[pid].thread.ip to rip */
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    } 
    
    int i = 0;
    
    void my_process(void)
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }

    对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度。

    myinterrupt.c:时钟中断处理和进程调度算法

    /*
     *  linux/mykernel/myinterrupt.c
     *
     *  Kernel internal my_timer_handler
     *  Change IA32 to x86-64 arch, 2020/4/26
     *
     *  Copyright (C) 2013, 2020  Mengning
     *
     */
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {        
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushq %%rbp
    	"         /* save rbp of prev */
                "movq %%rsp,%0
    	"     /* save rsp of prev */
                "movq %2,%%rsp
    	"     /* restore  rsp of next */
                "movq $1f,%1
    	"       /* save rip of prev */    
                "pushq %3
    	" 
                "ret
    	"                 /* restore  rip of next */
                "1:	"                  /* next process start here */
                "popq %%rbp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
        }  
        return;    
    }

    mykernel提供了时钟中断机制,周期性执行my_time_handler中断处理程序。

    最后重新编译,在linux-5.4.34目录下执行如下命令:

    make defconfig
    make -j$(nproc)
    qemu-system-x86_64 -kernel arch/x86/boot/bzImage

    可以看到效果:

    从process0到process3交替执行

    实验总结

    通过本次实验,我对操作系统的时间轮转机制和中断机制有了更深的了解,对底层的实现有了更加清晰的认识,实在获益良多。

  • 相关阅读:
    第二次团队介绍
    团队介绍
    随手记解决的问题
    iOS 接入支付 --- 支付宝支付
    GCD 以及设计模式
    iOS 小技巧总结
    tabBar 的上拉隐藏,上拉显示实现
    iOS开发---冷门小技巧
    iOS开发:盘点常用的几种设计模式 --(转自 liwei3gjob的专栏)
    OC --(9)-- 内存管理初级:内存管理的方式、引用计数机制,影响计数的各个方法、dealloc方法、内存管理的基本原则、掌握copy的实现
  • 原文地址:https://www.cnblogs.com/Liwj57csseblog/p/12874503.html
Copyright © 2011-2022 走看看