1、数据导入:
要求将样表文件中的(sales_sample_20170310)数据导入 HIVE 数据仓库中。
2、数据清洗:
要求将 day_id 一列中的数值清洗为真实的日期格式,可用字符串表示。
数据 1 对应日期 2021-09-01,依次类推,15 对应日期 2021-09-15
insert overwrite table sales_clean select date_add('2021-09-00',cast(day_id as int)) as day_id,sale_nbar as sale_nbr,buy_nbr as buy_nbr,cnt as cnt,round as round from sales_result;
3、数据分析处理:
(1)统计每天各个机场的销售数量和销售金额。
要求的输出字段
day_id,sale_nbr,,cnt,round
日期编号,卖出方代码,数量,金额
新建机场的销售表:sales_ariport2存储
insert into sales_airport2(day_id,sale_nbr,cnt,round)select day_id, sale_nbr, SUM(cnt) as cnt,SUM(round) as round from sales_test2_clean group by sale_nbr,day_id having sale_nbr like 'C%';
(2)统计每天各个代理商的销售数量和销售金额。
要求的输出字段
day_id,sale_nbr,,cnt,round
日期编号,卖出方代码,数量,金额
新建代理商表:sales_dailishang
#代理商
create table sales_dailishang(day_id String,
sale_nbr String,
cnt int,
round int)
ROW format delimited fields terminated by ',' STORED AS TEXTFILE;
insert into sales_dailishang(day_id,sale_nbr,cnt,round)select day_id, sale_nbr, SUM(cnt) as cnt,SUM(round) as round from sales_test2_clean group by sale_nbr,day_id having sale_nbr like 'O%';
(3)统计每天各个代理商的销售活跃度。
要求的输出字段
day_id,sale_nbr, sale_number
日期编号,卖出方代码,交易次数(买入或者卖出均算交易次数)
代理商总表sales_dailishang_all
create table sales_dailishang_all as select day_id as day_id,sale_nbr as sale_nbr,buy_nbr as buy_nbr,SUM(cnt) as cnt,SUM(round) as round from sales_clean group by sale_nbr,buy_nbr,day_id having sale_nbr like 'O%';
代理商卖出表sales_dailishang_sale
create table sales_dailishang_sale as select day_id as day_id,sale_nbr as sale_nbr,buy_nbr as buy_nbr,SUM(cnt) as cnt,SUM(round) as round from sales_clean group by sale_nbr,buy_nbr,day_id having sale_nbr like 'O%';
代理商买入sales_dailishang_buy
create table sales_dailishang_buy as select day_id as day_id,sale_nbr as sale_nbr,buy_nbr as buy_nbr,SUM(cnt) as cnt,SUM(round) as round from sales_clean group by sale_nbr,buy_nbr,day_id having buy_nbr like 'O%';
代理商活跃度 sales_dailishang_active
insert into sales_dailishang_active(day_id,sale_nbr,active)select day_id,sale_nbr,SUM(CNT) from sales_test2_clean group by sale_nbr,day_id having sale_nbr like 'O%';
(4)汇总统计 9 月 1 日到 9 月 15 日之间各个代理商的销售利润。
编号,卖出方代码,买入数量,买入金额,卖出数量,卖出金额,销售利润(卖出金额-买入金额)
#卖出
create table sales_out(day_id String,
sale_nbr String,
cnt int,
round int)
ROW format delimited fields terminated by ',' STORED AS TEXTFILE;
#买入
create table sales_in(day_id String,
buy_nbr String,
cnt int,
round int)
ROW format delimited fields terminated by ',' STORED AS TEXTFILE;
#利润
create table sales_lirun(day_id String,
sale_nbr String,
incnt int,
inround int,
outcnt int,
outround int,
lirun int)
ROW format delimited fields terminated by ',' STORED AS TEXTFILE;
(5)设计分析代理商的市场地位根据市场交易次数、交易对象个数、销售机票数量、销售利润等。(选做题)
4、处理结果入库:
将上述统计分析的结果数据保存到 mySQL 数据库中。
(1)统计每天各个机场的销售数量和销售金额。
(2)统计每天各个代理商的销售数量和销售金额。
(3) 统计每天各个代理商的销售活跃度。
(4)汇总统计 9 月 1 日到 9 月 15 日之间各个代理商的销售利润。
5、数据可视化展示:
利用 Echarts 将上述统计结果以图形化展示的方式展现出来:饼图、柱状图、地图、折线图等。
(1)统计每天各个机场的销售数量和销售金额。
(2)统计每天各个代理商的销售数量和销售金额。
(3)统计每天各个代理商的销售活跃度。
(3)汇总统计 9 月 1 日到 9 月 15 日之间各个代理商的销售利润。