Xor Sum AtCoder - 2272
Time limit : 2sec / Memory limit : 256MB
Score : 600 points
Problem Statement
You are given a positive integer N. Find the number of the pairs of integers u and v (0≦u,v≦N)such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 109+7.
Constraints
1≦N≦1018
Input
The input is given from Standard Input in the following format: N
Output
Print the number of the possible pairs of integers u and v, modulo 109+7.
Sample Input 1
3
Sample Output 1
5
The five possible pairs of u and v are:
u=0,v=0 (Let a=0,b=0, then 0 xor 0=0, 0+0=0.)
u=0,v=2 (Let a=1,b=1, then 1 xor 1=0, 1+1=2.)
u=1,v=1 (Let a=1,b=0, then 1 xor 0=1, 1+0=1.)
u=2,v=2 (Let a=2,b=0, then 2 xor 0=2, 2+0=2.)
u=3,v=3 (Let a=3,b=0, then 3 xor 0=3, 3+0=3.)
Sample Input 2
1422
Sample Output 2
52277
Sample Input 3
1000000000000000000
Sample Output 3
787014179
Solution
题意:给出正整数N
,求出整数对u
和v (0≤u,v≤N)
的数目,使得存在两个非负整数a
和b
满足a xor b = u
和a + b= v
。这里,xor
表示按位异或。对答案取模10^9 + 7
这是一道dp题,由于a+b = (a & b) <<1 + a ^ b,故可知a ^ b定然小于a+b,故本题可以化为寻找对于a+b<=n中a b 的个数。(当然 0 和 1 与 1 和 0是1种情况)
首先可以使用暴力的手段得知,当n=0的时候,答案为1,n=1的时候,答案为2。对于a与b(化作二进制来看),两者的末位和有0,1,2三种情况,设a+b=x,令a = a1 * 2+a2, b = b1 * 2 + b2,a2+b2即为两者的末位和,又有x<=n,故a1+a2<=(n-a1-a2)/2,可以得出递推式 f[x] = f[x/2] + f[(x-1)/2] + f[(x-2)/2];
Code
#include <cstdio>
#include <map>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const ll maxn=1e18+5;
map <ll,ll> f;//n范围这么大,开数组开不下......
ll Fc(ll x){
if(f[x])return f[x];
return f[x]=(Fc(x>>1)+Fc((x-1)>>1)+Fc((x-2)>>1))%mod;//这里用位移是比'/'快,当然也更好理解
}
int main(){
ll n;
scanf("%lld",&n);
f[0]=1;f[1]=2;
printf("%lld
",Fc(n));
return 0;
}