zoukankan      html  css  js  c++  java
  • 小根堆模板类

    #include<iostream>
    #include<Cstdio>
    using namespace std;
    template <class T>
    class MinHeap{
    private:
        T *heapArray;
        int CurrentSize;
        int MaxSize;
        void swap(int pos_x,int pos_y) //交换
        {
            T temp;
            temp=heapArray[pos_x];
            heapArray[pos_x]=heapArray[pos_y];
            heapArray[pos_y]=temp;
        }
        void BuildHeap();
    public:
        MinHeap(const int n);
        bool isEmpty();
        bool isLeaf(int pos) const;
        int left(int pos) const;
        int right(int pos) const;
        int Parent(int pos) const;
        bool Remove(int pos,T &node);
        bool Remove(int pos);
        bool Insert(const T value);
        T& RemoveTop();
        void ShiftUp(int position);
        void ShiftDown(int left);
        void display()
        {
            cout << "MaxSize:" <<MaxSize<<endl;
            cout << "CurrentSize:" <<CurrentSize<<endl;
            for(int i=0;i<CurrentSize;i++)
            {
                cout << heapArray[i] << " ";
            }
            cout <<endl;
        }
    
    };
    template <class T>
    MinHeap<T>::MinHeap(const int n)
    {
        if(n<0)return;
        MaxSize=n;
        CurrentSize=0;
        heapArray=new T[MaxSize];
        BuildHeap();
    }
    template <class T>
    bool MinHeap<T>::isLeaf(int pos) const{ //判断是否为叶子节点
        return (pos>=CurrentSize/2)&&(pos<CurrentSize);
    }
    template <class T>
    void MinHeap<T>::BuildHeap(){ //建堆
        for(int i=CurrentSize/2-1;i>=0;i--)
        {
            ShiftDown(i);
        }
    }
    template <class T>
    int MinHeap<T>::left(int pos) const
    {
        return 2*pos+1;
    }
    template <class T>
    int MinHeap<T>::right(int pos) const
    {
        return 2*pos+2;
    }
    template <class T>
    int MinHeap<T>::Parent(int pos) const
    {
        return ((pos-1)/2);
    }
    template <class T>
    bool MinHeap<T>::Insert(const T value) //新结点插入数组尾部并做一次上浮操作
    {
        if(CurrentSize==MaxSize)
            return false;
        heapArray[CurrentSize]=value;
        ShiftUp(CurrentSize);
        CurrentSize++;
        return true;
    }
    template <class T>
    T& MinHeap<T>::RemoveTop() //弹出最小值
    {
        if(CurrentSize==0)
        {
            cout << "Heap is empty" <<endl;
            return heapArray[CurrentSize-1];
        }
        else
        {
            swap(0,--CurrentSize);
            if(CurrentSize>1)
                ShiftDown(0);
            return heapArray[CurrentSize];
        }
    }
    template <class T>
    bool MinHeap<T>::Remove(int pos,T &node) //删除下标为pos的结点,将最后一个元素值与之替换
    {
        if((pos<0)||(pos>=CurrentSize))return false;
        node=heapArray[pos];
        heapArray[pos]=heapArray[--CurrentSize];
        if(heapArray[Parent(pos)]>heapArray[pos]) //根据替换后的删除节点选择上浮或下沉
            ShiftUp(pos);
        else ShiftDown(pos);
        return true;
    }
    template <class T>
    void MinHeap<T>::ShiftUp(int pos) //上浮
    {
        int temppos=pos; //初始化为上浮结点位置
        T temp=heapArray[temppos]; //上浮结点值
        while((temppos>0)&&(heapArray[Parent(temppos)]>temp)) //当前结点的父节点大于上浮结点
        {
            heapArray[temppos]=heapArray[Parent(temppos)];
            temppos=Parent(temppos);
        }
        heapArray[temppos]=temp;
    }
    template <class T>
    void MinHeap<T>::ShiftDown(int l) //下沉
    {
        //从左子树下沉
        int i=l;
        int j=left(i); //当前结点初始化为左子树
        T temp=heapArray[i];
        while(j<CurrentSize)
        {
            if((j<CurrentSize-1)&&(heapArray[j]>heapArray[j+1]))
            {
                //存在右子树且右结点小于左结点,指向右结点
                j++;
            }
            if(temp>heapArray[j]) //下沉节点值大于当前节点
            {
                heapArray[i]=heapArray[j]; //下沉
                i=j;
                j=left(j);
            }
            else break;
        }
        heapArray[i]=temp;
    }
    
    int main()
    {
        MinHeap<int> a(1000);
        int n;
        int s,p;
        while(cin>>n)
        {
            for(int i=0;i<n;i++)
            {
                cin>>s;
                a.Insert(s);
            }
            a.display();
            cin>>s;
            a.Remove(s,p);
            cout << "remove No." << s <<" value is "<<p<<endl;
            a.display();
            cout << "top:" <<a.RemoveTop() <<" removed" <<endl;
            a.display();
    
        }
    }
  • 相关阅读:
    基于边缘计算网关的桥梁结构安全监测应用
    5G工业网关的边缘计算
    5G工业网关和5G工业路由器差异对比分析
    大型网站架构系列:消息队列(二)
    大型网站架构系列:分布式消息队列(一)
    [转]线程安全类的设计
    [转]runloop原理
    [转]深入理解RunLoop
    [转]iOS保持界面流畅的技巧和AsyncDisplay介绍
    [转]面试时如何优雅的谈论OC
  • 原文地址:https://www.cnblogs.com/LowBee/p/9024928.html
Copyright © 2011-2022 走看看