zoukankan      html  css  js  c++  java
  • [BZOJ4361] isn

    题意简述
    给定一个序列,当序列不是单调上升(非严格,之后的"单调上升"也同样是非严格)时,删去一个数
    一直删到序列单调上升,问你有多少种操作方案

    (F_k) 为删第 (k) 个数时序列刚好单调上升(之前都没有)的方案数

    答案显然等于 (sum_{i = 1}^{n} F_i)

    直接求 (F_k) 有太多限制条件了,考虑用容斥原理

    先求出 (g_k) 为删掉 (k) 个数可以使得序列单调上升的方案数

    但直接这个求也不是很好求,考虑换一种方式求它

    我们可以用树状数组 (O(n^2logn)) 求出长度为 (k) 的单调上升子序列的个数 (f _ k)

    (g_k = k! imes f_{n-k})

    显然在删了 (k) 个数之后序列单调上升了的话,在此基础上删 (1,2,3cdots) 个也可以使得序列单调上升

    所以

    [F_k = g_k - sum_{i = 0} ^ {k - 1} perm(n - i, k - i) imes F_i \ perm(n,k) 表示n个数里选k个数的排列的方案数 ]

    特别的,(F_0 = g_0)

  • 相关阅读:
    React开发小问题记录
    React 生命周期
    CSS 函数
    React props
    React State 状态
    React 组件 复合组件
    React JSX语法
    js动态创建标签,并设置样式。
    jq 二级筛选切换
    从算法看背包问题(1)
  • 原文地址:https://www.cnblogs.com/Lskkkno1/p/11424209.html
Copyright © 2011-2022 走看看