zoukankan      html  css  js  c++  java
  • 模拟赛小结:2018 China Collegiate Programming Contest Final (CCPC-Final 2018)

    比赛链接:传送门

    跌跌撞撞6题摸银。

    封榜后两题,把手上的题做完了还算舒服。就是罚时有点高。

    开出了一道奇奇怪怪的题(K),然后ccpcf银应该比区域赛银要难吧,反正很开心qwq。


    Problem A. Mischievous Problem Setter 00:14 (-2) Solved by Dancepted

    良心签到题。WA2吃乳猪。

    代码:

    #include <iostream>
    #include <cmath>
    #include <map>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <set>
    #include <vector>
    #include <string>
    #include <queue>
    #include <stack>
    #include <iomanip>
    #define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    #define N 100005
    #define M 100005
    #define INF 0x3f3f3f3f
    #define mk(x) (1<<x) // be conscious if mask x exceeds int
    #define sz(x) ((int)x.size())
    #define upperdiv(a,b) (a/b + (a%b>0))
    #define mp(a,b) make_pair(a, b)
    #define endl '
    '
    #define lowbit(x) (x&-x)
    
    using namespace std;
    typedef long long ll;
    typedef double db;
    
    /** fast read **/
    template <typename T>
    inline void read(T &x) {
        x = 0; T fg = 1; char ch = getchar();
        while (!isdigit(ch)) {
            if (ch == '-') fg = -1;
            ch = getchar();
        }
        while (isdigit(ch)) x = x*10+ch-'0', ch = getchar();
        x = fg * x;
    }
    template <typename T, typename... Args>
    inline void read(T &x, Args &... args) { read(x), read(args...); }
    template <typename T>
    inline void write(T x) {
        int len = 0; char c[21]; if (x < 0) putchar('-'), x = -x;
        do{++len; c[len] = x%10 + '0';} while (x /= 10);
        for (int i = len; i >= 1; i--) putchar(c[i]);
    }
    template <typename T, typename... Args>
    inline void write(T x, Args ... args) { write(x), write(args...); }
    
    struct Node{
        int d, t;
        bool operator < (const Node& x) const {
            return d < x.d;
        }
    }nodes[N];
    int main() {
        fast;
        int T; cin >> T;
        for (int kase = 1; kase <= T; kase++) {
            int n, m; cin >> n >> m;
            for (int i = 1; i <= n; i++) {
                cin >> nodes[i].d;
            }
            for (int i = 1; i <= n; i++) {
                cin >> nodes[i].t;
            }
            sort(nodes+1, nodes+1+n);
            int ans = 0;
            for (int i = 1; i <= n; i++) {
                if (nodes[i].t <= m) {
                    m -= nodes[i].t;
                    ans++;
                }
                else {
                    break;
                }
            }
            cout << "Case " << kase << ": " << ans << endl;
        }
        return 0;
    }
    View Code

    Problem L. Ultra Weak Goldbach's Conjecture  00:47(+) Solved by xk (miller rabin + 素数密度 + 哥德巴赫猜想)

    根据素数密度为$log^{2}N$的结论,可以用米勒-拉宾的板子O(logn)判断大素数,暴力找出比n小的最大的一个大素数。

    哥德巴赫猜想在小数据范围内成立,剩下部分如果是奇数就分成2 + 2 + 3 + 两个素数,如果是偶数就是2 + 2 + 2 + 两个素数。

    (xk才是真正的数学选手,我连哥德巴赫猜想都不知道,就是打酱油的)

    代码:$O(T × log^{3}N)$

    #include <iostream>
    #include <cmath>
    #include <map>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <set>
    #include <vector>
    #include <string>
    #include <queue>
    #include <stack>
    #include <iomanip>
    #define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    #define INF 0x3f3f3f3f
    #define sz(x) ((int)x.size())
    #define mp(a,b) make_pair(a, b)
    #define endl '
    '
    
    using namespace std;
    typedef long long ll;
    typedef double db;
    
    int random(int l, int r)
    {
        return rand() % (r - l) + l;
    }
    
    ll fmul(ll a, ll b, ll mod)
    {
        a %= mod;
        ll res = 0;
        for(;b;b>>=1) {
            if(b & 1) res = (res + a) % mod;
            a = (a + a) % mod;
        }
        return res;
    }
    
    ll fpow(ll a, ll b, ll mod)
    {
        ll res = 1;
        for(;b;b>>=1) {
            if(b & 1) res = fmul(res, a, mod);
            a = fmul(a, a, mod);
        }
        return res;
    }
    
    bool witness(ll a, ll n, ll u, ll t)
    {
        ll x0 = fpow(a, u, n), x1;
        for(int i = 1; i <= t; i++)
        {
            x1 = fmul(x0, x0, n);
            if(x1 == 1 && x0 != 1 && x0 != n - 1) return false;
            x0 = x1;
        }
        if(x1 != 1) return false;
        return true;
    }
    
    bool isprime(ll n, int times = 20)
    {
        if(n == 2) return true;
        if(n < 2 || !(n & 1)) return false;
        ll u = n - 1, t = 0;
        while(u % 2 == 0) {
            t++;
            u>>=1;
        }
        while(times--)
        {
            ll a = random(1, n - 1);
            if(!witness(a, n, u, t)) return false;
        }
        return true;
    }
    
    int main() 
    {
        srand(time(0));
        fast;
        int T;
        cin >> T;
        for(int kase = 1; kase <= T; kase++)
        {
            cout << "Case " << kase << ": ";
            ll n;
            cin >> n;
            if(n < 12) {
                cout << "IMPOSSIBLE
    ";
                continue;
            }
            for(ll i = n - 10; ; i--)
            {
                if(isprime(i)) {
                    n -= i;
                    cout << i;
                    break;
                }
            }
            if(n & 1)
            {
                cout << " 2 2 3";
                n -= 7;
            }
            else
            {
                cout << " 2 2 2";
                n -= 6;
            }
            for(ll i = 2; i <= n / 2; i++)
            {
                if(isprime(i) && isprime(n - i))
                {
                    cout << ' ' << i << ' ' << n - i << endl;
                    break;
                }
            }
        }
    }
    View Code

    Problem G. Pastoral Life in Stardew Valley  01:13 (+) Solved by Dancepted (平方和公式)

    设$f_{n, m}$表示n × m的草地上放稻草人的方案数,则:

    $f_{n, m} = sum_{i=1}^{n-2} sum_{j=1}^{m-2}(n-i+1) × (m-j+1) = frac{(n-1)(n-2) × (m-1)(m-2)}{4}$

    设$F_{n, m}$表示n × m的土地上的答案,则:

    $F_{n, m} = sum_{i=3}^{n}sum_{j=3}^{m} (n-i+1)×(m-j+1)×f_{i, j}  $

        $= sum_{i=3}^{n}sum_{j=3}^{m} (n-i+1)×(m-j+1)×frac{1}{4}i(i-1) × i(i-1)$

        $= frac{1}{4} sum_{i=3}^{n}(n-i+1)(i-1)(i-2)sum_{j=3}^{m}(m-j+1)(j-1)(j-2)$

    令$g_{x} = frac{1}{2} sum_{i=3}^{x}(x-i+1)(i-1)(i-2)$,则$F_{n, m} = g_{n} * g_{m}$。

    考虑预处理$g_{x}$:

    ①:$g_{3} = 1$

    ②:若已知$g_{x} = frac{1}{2} sum_{i=3}^{x}(x-i+1)(i-1)(i-2)$,则:

    $g_{x+1} = frac{1}{2} sum_{i=3}^{x+1}(x-i+1+1)(i-1)(i-2)$

        $= frac{1}{2} sum_{i=3}^{x+1}(x-i+1)(i-1)(i-2) + frac{1}{2}sum_{i=3}^{x+1}(i-1)(i-2) $

    令$h_{x} =  frac{1}{2}sum_{i=3}^{x}(i-1)(i-2) $,则:

    $g_{x+1} = g_{x} + h_{x}$,其中,用平方和公式等差数列求和公式可以O(1)地计算$h_{x}$。

    代码:O(T + N)

    #include <iostream>
    #include <cmath>
    #include <map>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <set>
    #include <vector>
    #include <string>
    #include <queue>
    #include <stack>
    #include <iomanip>
    #define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    #define N 100005
    #define M 100005
    #define INF 0x3f3f3f3f
    #define mk(x) (1<<x) // be conscious if mask x exceeds int
    #define sz(x) ((int)x.size())
    #define upperdiv(a,b) (a/b + (a%b>0))
    #define mp(a,b) make_pair(a, b)
    #define endl '
    '
    #define lowbit(x) (x&-x)
    
    using namespace std;
    typedef long long ll;
    typedef double db;
    
    /** fast read **/
    template <typename T>
    inline void read(T &x) {
        x = 0; T fg = 1; char ch = getchar();
        while (!isdigit(ch)) {
            if (ch == '-') fg = -1;
            ch = getchar();
        }
        while (isdigit(ch)) x = x*10+ch-'0', ch = getchar();
        x = fg * x;
    }
    template <typename T, typename... Args>
    inline void read(T &x, Args &... args) { read(x), read(args...); }
    template <typename T>
    inline void write(T x) {
        int len = 0; char c[21]; if (x < 0) putchar('-'), x = -x;
        do{++len; c[len] = x%10 + '0';} while (x /= 10);
        for (int i = len; i >= 1; i--) putchar(c[i]);
    }
    template <typename T, typename... Args>
    inline void write(T x, Args ... args) { write(x), write(args...); }
    
    #define md 1000000007
    ll mul(ll a, ll b) {
        return a * b % md;
    }
    ll add(ll a, ll b) {
        ll res = (a+b) % md;
        if (res < 0) res += md;
        return res;
    }
    ll fpow(ll a, ll p) {
        ll res = 1;
        for (; p; p >>= 1) {
            if (p & 1)
                res = mul(res, a);
            a = mul(a, a);
        }
        return res;
    }
    
    ll inv6, inv2;
    ll g[N];
    ll h(ll x) {
        ll res = 0;
        res = add(res, mul(mul(x, mul(x+1, 2*x+1)), inv6));
        res = add(res, mul(mul(x, x+1), inv2));
        res = mul(res, inv2);
        return res;
    }
    void init() {
        g[3] = 1;
        for (int i = 4; i < N; i++) {
            g[i] = add(g[i-1], h(i-2));
        }
    }
    int main() {
        fast;
        int T; cin >> T;
        inv2 = fpow(2, md-2);
        inv6 = fpow(6, md-2);
        init();
        for (int kase = 1; kase <= T; kase++) {
            int n, m; cin >> n >> m;
            ll ans = mul(g[n], g[m]);
            cout << "Case " << kase << ": " << ans << endl;
        }
        return 0;
    }
    View Code

    Problem K. Mr. Panda and Kakin  02:36 (-2) Solved by Dancepted & xk (欧拉定理 逆元 素数密度)

    根据欧拉定理的推论,$i^{a}$ mod n的循环节长度为$phi(n)$,并且把n分解为$sum_{pin prime}p_{i}^{m_{i}}$后若$m_{i}$ <= 1,则$i^{a}$ mod n为纯循环(参考纯循环小数意会一下)。

    那么只要能把$FLAG^{2^{30}+3}$凑成$FLAG^{1 mod phi(n)}$就行了。

    实际上$(x^{a})^{b} = x^{a×b}$,所以如果我们能求出$2^{30}+3$关于$phi(n)$的逆元,那么就有$(Flag^{2^{30}+3})^{逆元} = Flag^{1 mod phi(n)} = Flag$。

    而这个逆元是肯定存在的,因为$2^{30}+3$是一个质数,而且考虑到n的生成方式,n = p × q,phi(n) = (p-1)×(q-1)。而 p-1,q-1 < $2^{30}+3$,因此($2^{30}+3, phi(n)$)= 1。

    求$phi(n)$的时候考虑素数密度,可以$O(log^{2}n)$暴力地找出n的两个素因子。

    然后快速幂会爆long long,要用快速乘,然后这题的log又比较大,$log^{2}$会tle,所以要用O(1)的快速乘

    PS:第一次写脑抽了以为$(x^{a})^{c} = x^{a+b}$,幸好没过样例。

    PPS:这里吹爆jls在ccpc-camp讲的数论div2,听完之后碰到欧拉定理完全不虚,然后在comet oj的直播回放里就可以看(jls的盛世美颜)了。

    代码:O(T×logn)

    #include <iostream>
    #include <cmath>
    #include <map>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <set>
    #include <vector>
    #include <string>
    #include <queue>
    #include <stack>
    #include <iomanip>
    #define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    #define N 100005
    #define M 100005
    #define INF 0x3f3f3f3f
    #define mk(x) (1<<x) // be conscious if mask x exceeds int
    #define sz(x) ((int)x.size())
    #define upperdiv(a,b) (a/b + (a%b>0))
    #define mp(a,b) make_pair(a, b)
    #define endl '
    '
    #define lowbit(x) (x&-x)
    
    using namespace std;
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    
    /** fast read **/
    template <typename T>
    inline void read(T &x) {
        x = 0; T fg = 1; char ch = getchar();
        while (!isdigit(ch)) {
            if (ch == '-') fg = -1;
            ch = getchar();
        }
        while (isdigit(ch)) x = x*10+ch-'0', ch = getchar();
        x = fg * x;
    }
    template <typename T, typename... Args>
    inline void read(T &x, Args &... args) { read(x), read(args...); }
    template <typename T>
    inline void write(T x) {
        int len = 0; char c[21]; if (x < 0) putchar('-'), x = -x;
        do{++len; c[len] = x%10 + '0';} while (x /= 10);
        for (int i = len; i >= 1; i--) putchar(c[i]);
    }
    template <typename T, typename... Args>
    inline void write(T x, Args ... args) { write(x), write(args...); }
    
    ll gcd(ll a, ll b) {
        return b == 0 ? a : gcd(b, a%b);
    }
    ll fmul(ll a, ll b, ll md) {
        a %= md, b %= md;
        ll c = (ldb) a * b / md;
        ll ans = a * b - c * md;
        if (ans < 0) ans += md;
        else if (ans >= md) ans -= md;
        return ans;
    }
    ll fpow(ll a, ll p, ll md) {
        ll res = 1;
        for (; p; p >>= 1) {
            if (p & 1)
                res = fmul(res, a, md);
            a = fmul(a, a, md);
        }
        return res;
    }
    
    ll exgcd(ll a, ll b, ll &x, ll &y) {
        if (a == 0 && b == 0) return -1;
        if (b == 0) {x = 1, y = 0; return a;}
        ll d = exgcd(b, a%b, y, x);
        y -= a/b*x;
        return d;
    }
    ll mod_reverse(ll a, ll n) {
        ll x, y;
        ll d = exgcd(a, n, x, y);
        if (d == 1) return (x % n + n) % n;
        return -1;
    }
    
    int main() {
        // fast;
        int T; cin >> T;
        for (int kase = 1; kase <= T; kase++) {
            ll n, c; read(n, c);
            ll g = gcd(n, c);
            ll flag = 0, phin = 0;
            if (g == 1) {
                ll x = sqrt(n+0.5);
                if (x % 2 == 0)
                    x--;
                for (ll i = x; i >= 0; i -= 2) {
                    if (n % i == 0) {
                        phin = (i-1) * (n/i -1);
                        break;
                    }
                }
            }
            else {
                phin = (g-1) * (n/g - 1);
            }
            ll p = mod_reverse((1<<30)+3, phin);
            flag = fpow(c, p, n);
    
            printf("Case %d: %I64d
    ", kase, flag);
        }
        return 0;
    }
    /*
    3
    181857896263 167005790444
    218128229323 156323229335
    352308724847 218566715941
    */
    View Code

    Problem I. Cockroaches  04:19 (-1) Solved by Dancepted & lh & xk 

    大概是个思维题吧。。。封榜20分钟才调出来qwq。(不过好像是第一次封榜后过题?)

    能消灭的最多的小强数量只有两种情况。设小强数最多的行和列对应的小强数是r和c,那么能消灭最多的数量要么是r+c,要么是r+c-1。

    然后遍历小强数最多的行(列)上的小强,统计能消灭r+c和r+c-1的方案数就行了。

    具体的就是遍历小强数最多的行(列)上的小强的时候,看这些小强是否恰巧在小强数最多的列(行),如果在的话,说明激光中心在这个小强所在点上时,能消灭的数量是r+c-1而不是r+c。

    若r+c的数量为0,那么用同样的方法再统计一下小强数次多的行(列)与小强数最多的列(行)对r+c-1的贡献就行了。

    小强的坐标上限是1e9,要离散化一下。

    特别地:依次最多消灭小强数为2的时候要特判一下,防止在两个不同点消灭了两个相同小强。

    代码:O(T×nlogn)

    #include <iostream>
    #include <cmath>
    #include <map>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <set>
    #include <vector>
    #include <string>
    #include <queue>
    #include <stack>
    #include <iomanip>
    #define fast ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    #define N 200005
    #define M 100005
    #define INF 0x3f3f3f3f
    #define mk(x) (1<<x) // be conscious if mask x exceeds int
    #define sz(x) ((int)x.size())
    #define upperdiv(a,b) (a/b + (a%b>0))
    #define mp(a,b) make_pair(a, b)
    #define endl '
    '
    #define lowbit(x) (x&-x)
    
    using namespace std;
    typedef long long ll;
    typedef double db;
    
    /** fast read **/
    template <typename T>
    inline void read(T &x) {
        x = 0; T fg = 1; char ch = getchar();
        while (!isdigit(ch)) {
            if (ch == '-') fg = -1;
            ch = getchar();
        }
        while (isdigit(ch)) x = x*10+ch-'0', ch = getchar();
        x = fg * x;
    }
    template <typename T, typename... Args>
    inline void read(T &x, Args &... args) { read(x), read(args...); }
    template <typename T>
    inline void write(T x) {
        int len = 0; char c[21]; if (x < 0) putchar('-'), x = -x;
        do{++len; c[len] = x%10 + '0';} while (x /= 10);
        for (int i = len; i >= 1; i--) putchar(c[i]);
    }
    template <typename T, typename... Args>
    inline void write(T x, Args ... args) { write(x), write(args...); }
    
    int n; 
    vector<int> vals;
    map<int, int> id;
    // int id[N<<1];
    struct Node{
        int r, c;
    }ns[N];
    vector <Node> vc[N], vr[N];
    int cntr1 = -1, cntr2 = -1, lenr1 = -1, lenr2 = -1;
    int cntc1 = -1, cntc2 = -1, lenc1 = -1, lenc2 = -1;
    void init() {
        sort(vals.begin(), vals.end());
        vals.erase(unique(vals.begin(), vals.end()), vals.end());
        for (int i = 0; i < sz(vals); i++) {
            id[vals[i]] = i;
            vc[i].clear();
            vr[i].clear();
        }
    
        for (int i = 1; i <= n; i++) {
            int idr = id[ns[i].r], idc = id[ns[i].c];
            vr[idr].push_back(ns[i]);
            vc[idc].push_back(ns[i]);
        }
        cntr1 = -1, cntr2 = -1, lenr1 = -1, lenr2 = -1;
        cntc1 = -1, cntc2 = -1, lenc1 = -1, lenc2 = -1;
        for (int i = 0; i < sz(vals); i++) {
            if (sz(vr[i]) > lenr1) {
                lenr2 = lenr1;
                cntr2 = cntr1;
                lenr1 = sz(vr[i]);
                cntr1 = 1;
            }
            else if (sz(vr[i]) == lenr1) {
                cntr1++;
            }
            else if (sz(vr[i]) > lenr2) {
                lenr2 = sz(vr[i]);
                cntr2 = 1;
            }
            else if (sz(vr[i]) == lenr2) {
                cntr2++;
            }
    
            if (sz(vc[i]) > lenc1) {
                lenc2 = lenc1;
                cntc2 = cntc1;
                lenc1 = sz(vc[i]);
                cntc1 = 1;
            }
            else if (sz(vc[i]) == lenc1) {
                cntc1++;
            }
            else if (sz(vc[i]) > lenc2) {
                lenc2 = sz(vc[i]);
                cntc2 = 1;
            }
            else if (sz(vc[i]) == lenc2) {
                cntc2++;
            }
        }
    }
    
    int main() {
        fast;
        int T; cin >> T;
        for (int kase = 1; kase <= T; kase++) {
            cin >> n;
            id.clear();
            vals.clear();
            for (int i = 1; i <= n; i++) {
                read(ns[i].r, ns[i].c);
                vals.push_back(ns[i].r);
                vals.push_back(ns[i].c);
            }
            init();
            
            ll ans1 = lenc1 + lenr1, cnt1 = 0;
            ll ans2 = lenc1 + lenr1 - 1, cnt2 = 0;
            for (int i = 0; i < sz(vals); i++) {
                if (sz(vc[i]) == lenc1) {
                    cnt1 += cntr1;
                    if (lenr2 == lenr1 - 1) {
                        cnt2 += cntr2;
                    }
                    for (Node &tmp : vc[i]) {
                        if (sz(vr[id[tmp.r]]) == lenr1) {
                            // share same point
                            cnt1--;
                            cnt2++;
                        }
                        else if (lenr2 == lenr1 - 1 && sz(vr[id[tmp.r]]) == lenr2) {
                            cnt2--;
                        }
                    }
                }
                else if (lenc2 == lenc1 - 1 && sz(vc[i]) == lenc2) {
                    cnt2 += cntr1;
                    for (Node &tmp: vc[i]) {
                        if (sz(vr[id[tmp.r]]) == lenr1) {
                            // share same point
                            cnt2--;
                        }
                    }
                }
            }
            
            ll ans = 0, cnt = 0;
            if (cnt1 > 0) {
                ans = ans1, cnt = cnt1;
            }
            else {
                ans = ans2, cnt = cnt2;
            }
            if (ans == 2) {
                cnt = 1LL * n * (n-1) / 2;
            }
            printf("Case %d: %I64d %I64d
    ", kase, ans, cnt);
        }
        return 0;
    }
    View Code

    Problem B. Balance of the Force 04:35(+) Solved by lh(贪心)

    不能放在同一边的两个人连一条边,如果得到的图中有奇数环,则不可能。

    然后枚举最小的能力值。贪心地寻找最小的最大值。

    枚举下一个最小的能力值时,仅有当前最小能力值所在的环,和下一个最小能力值所在的环对应的能力值要更新,所以整个贪心可以是O(N)的。

    代码:O(T×N)

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <vector>
    #include <cstring>
    #define N 200005
    #define INF 0x3f3f3f3f
    #define fi first
    #define se second
    
    using namespace std;
    typedef pair<int,int> pii;
    
    /** fast read **/
    template <typename T>
    inline void read(T &x) {
        x = 0; T fg = 1; char ch = getchar();
        while (!isdigit(ch)) {
            if (ch == '-') fg = -1;
            ch = getchar();
        }
        while (isdigit(ch)) x = x*10+ch-'0', ch = getchar();
        x = fg * x;
    }
    template <typename T, typename... Args>
    inline void read(T &x, Args &... args) { read(x), read(args...); }
    template <typename T>
    inline void write(T x) {
        int len = 0; char c[21]; if (x < 0) putchar('-'), x = -x;
        do{++len; c[len] = x%10 + '0';} while (x /= 10);
        for (int i = len; i >= 1; i--) putchar(c[i]);
    }
    template <typename T, typename... Args>
    inline void write(T x, Args ... args) { write(x), write(args...); }
    int T;
    int n, m, ednum, top, col[N];
    int w[N][2];
    struct node
    {
        int be, w;
        bool operator<(const node &other)const
        {
            return w < other.w;
        }
    } s[N << 1];
    struct Unite
    {
        int cur, maxn[2], minx[2];
    } st[N];
    int hed[N << 1], nxt[N << 1], to[N << 1];
    void add(int u, int v)
    {
        to[++ednum] = v;
        nxt[ednum] = hed[u], hed[u] = ednum;
    }
    bool dfs(int v)
    {
        st[top].maxn[0] = max(st[top].maxn[0], w[v][col[v]]), st[top].minx[0] = min(st[top].minx[0], w[v][col[v]]);
        st[top].maxn[1] = max(st[top].maxn[1], w[v][col[v] ^ 1]), st[top].minx[1] = min(st[top].minx[1], w[v][col[v] ^ 1]);
        for (int i = hed[v]; i; i = nxt[i])
        {
            int u = to[i];
            if (col[u] == col[v])
                return false;
            if (col[u] != -1)
                continue;
            col[u] = 1 ^ col[v];
            if (dfs(u) == false)
                return false;
        }
        return true;
    }
    int save[N], ansmax;
    bool reduce()
    {
        while (top)
        {
            int id = save[top];
            if (st[id].cur == 1)
                return false;
            ansmax = max(ansmax, st[id].maxn[1]), st[id].cur = 1, --top;
        }
        return true;
    }
    int main() {
        read(T);
        int u, v, cnt;
        int casecnt = 0;
        while (T--)
        {
            ++casecnt;
            read(n, m), ednum = top = 0, memset(hed, 0, sizeof(int) * (n + 1)), memset(col, -1, sizeof(int) * (n + 1));
            for (int i = 1;i <= m; ++i)
                read(u, v), add(u, v), add(v, u);
            for (int i = 1;i <= n; ++i)
                read(w[i][0], w[i][1]);
            bool flag = true;
            ansmax = 0, top = 0, cnt = 0;
            int ans = INF;
            for (int i = 1;i <= n; ++i)
            {
                if (col[i] != -1) continue;
                ++top, st[top].cur = 0, st[top].maxn[0] = st[top].maxn[1] = 0;
                st[top].minx[0] = st[top].minx[1] = INF, col[i] = 0, flag &= dfs(i);
                if (flag == false)
                    break;
                if (st[top].minx[0] > st[top].minx[1])
                    swap(st[top].minx[0], st[top].minx[1]), swap(st[top].maxn[0], st[top].maxn[1]);
                if (st[top].maxn[0] >= st[top].maxn[1])
                    st[top].cur = 1;
                else
                    s[++cnt] = node{top, st[top].minx[0]};
                s[++cnt] = node{top, st[top].minx[1]};
                ansmax = max(ansmax, st[top].maxn[st[top].cur]);
            }
            printf("Case %d: ", casecnt);
            if (flag == false)
            {
                puts("IMPOSSIBLE");
                continue;
            }
            sort(s + 1, s + 1 + cnt);
            int i = 1;
            top = 0;
            while (flag && i <= cnt)
            {
                ans = min(ans, ansmax - s[i].w);
                save[++top] = s[i].be;
                if (s[i].w != s[i + 1].w)
                {
                    flag &= reduce();
                    if (!flag)
                        break;
                }
                ++i;
            }
            write(ans), putchar('
    ');
        }
        return 0;
    }
    View Code


    还有不到一周就是CCPC-Final了,这周每两天一套题,冲鸭。


    总结:

    浮躁的菜逼选手贡献全部罚时。

  • 相关阅读:
    [Java] 计算两个日期之间的差(年 月 日)
    Javassist library is missing in classpath! Please add missed dependenc
    $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 区别
    内存管理一
    内存管理四
    内存管理二
    内存分配函数分类
    内存映像文件
    内存管理三
    到底有多少内存
  • 原文地址:https://www.cnblogs.com/Lubixiaosi-Zhaocao/p/11831096.html
Copyright © 2011-2022 走看看