zoukankan      html  css  js  c++  java
  • 装机常用

    Python

    • 安装cv2:pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

    • jupyter notebook:
      • 修改默认路径:到C:UsersUserName.jupyter路径下,找到jupyter_notebook_config.py文件,将文件内的"c.NotebookApp.notebook_dir = 'F:/jupytercode/'"修改成希望的起始路径
      • 修改jupyter的python编辑器,使其在创建的python虚拟环境下运行:参考:https://zhuanlan.zhihu.com/p/29564719
      • #在conda指定的虚拟环境下安装执行下列命令
        conda install nb_conda
        
        # 然后在conda 虚拟环境下运行
        jupyter notebook
        
        # 在启动的jupyter中点击new,选择期望的虚拟环境即可
    • Module Error:
      • No module named 'yaml', 这时需要在指定的虚拟环境下安装pyyaml
        • conda activate tfcpu # 激活tfcpu虚拟环境
          pip install pyyaml # 安装pyyaml模块
      • No module named 'PIL',  这时安装PIL
        • pip install Pillow==6.2.0
      • cannot import name 'imread' from 'scipy.misc', 
        •  明明安装了scipy,却无法使用imread方法,是因为scipy版本过高,建议使用anaconda降级:找到目标虚拟环境,找到scipy模块,点击左侧对号,选择1.2.1版本,点击应用,如下。
        • 有时以上操作不行,是因为python 版本过高,需要将Python降级到3.6.版本,方法如上
      • 安装skimage:

      • pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple
    • 安装GPU版TensorFlow,实际上先安装tensorflow-gpu版,然后import tensorflow 时提示下载什么版本的CUDA和cudnn就去NVIDIA官网下载什么版本的即可!

    方法一:conda 安装

    conda create -n tfgpu python=3.6.7
    
    conda activate tfgpu
    
    conda install tensorflow-gpu==1.14.0

    方法二:pip安装

    •  

      • conda create -n tfgpu python=3.5.6
        conda activate tfgpu
        #查看cuda的版本, 我的是 8.0.44,因为我在服务器上有tfgpu环境,所以按照这个环境安装一遍
        cat /usr/local/cuda/version.txt    
        
        #查看cudnn版本, 我的是6 * 1000 + 0 * 100 + 21
        cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

        下载旧版本的CUDA地址:https://developer.nvidia.com/cuda-toolkit-archive, 我应该下载8.0.44,这里不想改截图了

      • CUDA下载好之后根据提示一直下一步安装即可
      • 下载cudnn6.0.21https://developer.nvidia.com/cudnn,一顿注册以后,可以看到如下页面,下载安装6.0.21 for CUDA8.0即可,这里也不想改截图了
      • 将下载解压好的cudnn的cuda文件夹放入"C:Program FilesNVIDIA GPU Computing ToolkitCUDA"目录下。
      • 配置环境变量:
      • 将CUDA8.0的bin目录:“C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0in”加入Path环境变量,将cudnn6.0.21的bin目录也加至Path环境变量:“C:Program FilesNVIDIA GPU Computing ToolkitCUDAin”,将“C:Program FilesNVIDIA CorporationNVSMI”加至Path系统变量,注意,要把NVSMI路径放到上面,否者在cmd命令中会报“Failed to initialize NVML: Unknown Error”错误
      • 以上就下载了CUDA和cudnn
      • 安装TensorFlow-gpu 1.4.0
      • pip install tensorflow-gpu==1.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
      • 安装CUDA和cudnn的虚拟环境https://www.cnblogs.com/elitphil/p/11833815.html
      • conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
        conda install cudnn=6.0.21 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

    装机软件

    • win10 共享文件夹:
    • 右击你想共享的文件夹,点击属性→高级共享
    • 勾选“共享此文件夹”,共享名可以按照自己的需要进行改写,点击确定,之后在“共享”选项卡下就可以看到网络路径已经被填写了。
    • 右击前面需要共享的文件夹,选择“授予访问权限”,点击“特定用户...”,选择“Everyone",点击添加(选择Everyone没有关系,因为对方主机需要知道本机的IP地址才能访问你的共享文件夹)
    • 点击”共享“,选择共享的文件夹,点击完成即可
    • 下一步,在另一台主机上的文件资源管理器上,输入上面主机的IP即可看到上面共享的文件夹,下面可以愉快的共享传输文件了(十分方便!)
    • 如果上面连接未成功,应该设置一下本地主机网络可以被发现
    • 删除顽固软件,文件夹:

    • 对于顽固无法删除的文件夹,删除时要求获得xxx权限才可以删除,百度到的修改文件夹属性的方法根本不可用,下面可用进入安全模式删除,win10有效:
    • 开始→设置→更新和安全→恢复→立即重新启动。注意:必须这样重启才能继续下面的操作
    • 疑难解答→高级选项→启动设置→重启
    • 电脑重启以后,出现一个交互界面
    • 按F4进入安全模式→找到想要删除的文件夹→shift+delete彻底删除文件夹
  • 相关阅读:
    vue+ element table如何给指定的单元格添加点击事件
    nodejs 笔记
    sublime text3 编辑器如何运行js文件
    控制台运行nodejs程序
    控制台命令
    类似性别(0、1)判断的table列表数据渲染
    vue moment库格式化处理日期
    用百度siteapp的uaredirect.js判断用户访问端而进行域名的自动跳转
    编写email邮件的html页面注意事项
    IE6常见bug总结
  • 原文地址:https://www.cnblogs.com/LuckBelongsToStrugglingMan/p/12868859.html
Copyright © 2011-2022 走看看