1.运用场景
CTR模型/embedding生成/正负样本选择。
2.创新点
introduce the unified embedding framework developed to model semantic embeddings for personalized search,and the system to serve embedding-based retrieval in a typical search system based on an inverted index.
3.算法原理
3.1 网络框架

3.2 Embedding-based Retrieval in Facebook Search

Embedding-based Retrieval in Facebook Search论文
4.算法理解
依据推荐业务场景,选择对应重要的特征融合生成embedding。