zoukankan      html  css  js  c++  java
  • 「SOL」Tug of War(洛谷)

    至理名言「deadline 是第一生产力」


    # 题面

    (2n) 个人,分成两个队(A,B)拔河。其中第 (i) 个人若参加 A 队,则只能站在 A 队的 (a_i) 位置;若参加 B 队,则只能站在 (b_i) 位置;并且他的力量为 (k_i)

    要求两队都恰有 (n) 个人,同一个位置不能站多个人,并且两队的力量之差不超过 (K)

    求是否存在满足要求的方案。

    数据规模:(1le nle3 imes10^4)(k_ile20)


    # 解析

    不管「力量差不超过 (K)」的限制,先看看什么时候存在合法的分组。

    做过类似的题,把一个人看作一条边 ((a_i,b_i+n)),可以转化为图论模型。

    那么在这个模型中,点表示队伍中的位置,边表示人。一条边只能“占据”其端点的位置,于是可以转化为「给边定向,使得每个点恰有一个入度」的问题。

    首先必须满足每个连通块的点数等于边数,这意味着每个连通块恰有一个环(基环树)。

    再推导一下。我们从基环树上总度数为 (1) 的点开始给边定向,发现与它连接的唯一一条边的方向是固定指向它的。于是定向后删去该点和边,继续处理子问题。

    于是我们可以发现——基环树上非环上边的方向是固定的。而环上的边则显然存在两种方案(“顺时针”和“逆时针”)。

    我们不妨计算「A 队总力量 - B 队总力量」,则定义一个有向边的边权——若指向 (a_i),边权为 (+k_i);指向 (b_i) 则为 (-k_i)

    先随便给环定个向,对每个基环树算出其环的权 (c) 和非环边的权 (l),则易得整个基环树的权只可能为 (lpm c)

    这样我们做一个「0-1背包」,而且注意到 dp 值是 bool,常规操作用 bitset 进行优化,记 (S=20n),则复杂度 (mathcal{O}(frac{Sn}{w}))

    直接这么做不开 O2 是卡不过的,考虑继续优化。

    注意到上述背包的所有物品的大小总和不超过 (S),那么这意味着大小不同的物品总数是 (mathcal{O}(sqrt S)) 的——大小超过 (sqrt S) 的物品至多有 (sqrt S) 种,小于 (sqrt S) 的物品本来就只有 (sqrt{S}) 种。

    于是将「0-1背包」转化为「多重背包」,最后利用二进制分组重新转化为物品数为 (mathcal{O}(sqrt{S}log n)) 的「0-1背包」。

    再次利用 bitset 将时间复杂度降至 (mathcal{O}(frac{S^{1.5}log n}{w}))。的确是一道分析和优化思路都很清晰的好题。


    # 源代码

    点击展开/折叠代码
    /*Lucky_Glass*/
    #include<bitset>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    inline int rin(int &r){
    	int b=1,c=getchar();r=0;
    	while(c<'0' || '9'<c) b=c=='-'?-1:b,c=getchar();
    	while('0'<=c && c<='9') r=(r<<1)+(r<<3)+(c^'0'),c=getchar();
    	return r*=b;
    }
    const int N=3e4+10;
    #define con(type) const type &
    
    struct Dsu{
    	int fa[N<<1];
    	bool tag[N<<1];
    	inline int findFa(con(int)u){return fa[u]==u?u:fa[u]=findFa(fa[u]);}
    	inline bool merge(int u,int v){
    		u=findFa(u),v=findFa(v);
    		if(u==v){
    			if(tag[u]) return false;
    			return tag[u]=true;
    		}
    		if(tag[u] && tag[v]) return false;
    		fa[u]=v,tag[v]|=tag[u];
    		return true;
    	}
    	void init(con(int)n){
    		for(int i=1;i<=n;i++)
    			fa[i]=i,tag[i]=false;
    	}
    }ds;
    struct Graph{
    	int head[N<<1],to[N<<2],nxt[N<<2],len[N<<2],ncnt;
    	Graph(){ncnt=1;}
    	void addEdge(con(int)u,con(int)v,con(int)l){
    		int p=++ncnt,q=++ncnt;
    		to[p]=v,nxt[p]=head[u],len[p]=l,head[u]=p;
    		to[q]=u,nxt[q]=head[v],len[q]=l,head[v]=q;
    	}
    	inline int operator [](con(int)u){return head[u];}
    }gr;
    
    int n,bonk,rcir,rlis,nval_bin,nval;
    int dep[N<<1],val_bin[N],val[N];
    bitset<N*40> dp[2];
    bool covered[N<<1];
    
    bool searchDFS(con(int)u,con(int)las_edg){
    	bool oncir=false,fix_end=false;
    	for(int it=gr[u];it;it=gr.nxt[it]){
    		int v=gr.to[it];
    		if((it>>1)==las_edg) continue;
    		if(dep[v]){
    			if(dep[v]<dep[u]){
    				oncir=true;
    				covered[v]=true;
    				if(v>n) rcir+=gr.len[it];
    				else rcir-=gr.len[it];
    			}
    			else fix_end=true;
    			continue;
    		}
    		dep[v]=dep[u]+1;
    		if(searchDFS(v,it>>1)){
    			oncir=true;
    			if(v>n) rcir+=gr.len[it];
    			else rcir-=gr.len[it];
    		}
    		else{
    			if(covered[v]){
    				covered[u]=true;
    				if(u>n) rlis+=gr.len[it];
    				else rlis-=gr.len[it];
    			}
    			else
    				if(v>n) rlis+=gr.len[it];
    				else rlis-=gr.len[it];
    		}
    	}
    	return !fix_end && oncir;
    }
    int main(){
    	// freopen("input.in","r",stdin);
    	rin(n),rin(bonk);
    	ds.init(n<<1);
    	for(int i=1,li,ri,ki;i<=2*n;i++){
    		rin(li),ri=rin(ri)+n,rin(ki);
    		if(!ds.merge(li,ri)){printf("NO
    ");return 0;}
    		gr.addEdge(li,ri,ki);
    	}
    	for(int i=1;i<=2*n;i++)
    		if(ds.fa[i]==i && !ds.tag[i]){
    			printf("NO
    ");
    			return 0;
    		}
    	int ini_val=0;
    	for(int i=1;i<=2*n;i++)
    		if(!dep[i]){
    			dep[i]=1;
    			rlis=rcir=0,searchDFS(i,-1);
    			// printf("? %d %d
    ",rlis+rcir,rlis-rcir);
    			if(rcir>0){
    				ini_val+=rlis-rcir;
    				val_bin[++nval_bin]=rcir<<1;
    			}
    			else{
    				ini_val+=rlis+rcir;
    				val_bin[++nval_bin]=(-rcir)<<1;
    			}
    		}
    	sort(val_bin+1,val_bin+1+nval_bin);
    	for(int i=1;i<=nval_bin;i++){
    		int ii=i,siz;
    		while(ii<nval_bin && val_bin[ii+1]==val_bin[i]) ii++;
    		siz=ii-i+1;
    		for(int j=1;j<=siz;j<<=1){
    			val[++nval]=j*val_bin[i];
    			siz-=j;
    		}
    		if(siz) val[++nval]=siz*val_bin[i];
    		i=ii;
    	}
    	dp[0][0]=1;
    	int I=1;
    	for(int i=1;i<=nval;i++,I^=1)
    		dp[I]=dp[!I]|(dp[!I]<<val[i]);
    	for(int i=max(-bonk-ini_val,0);i<=min(bonk-ini_val,40*N-1);i++)
    		if(dp[I][i]){
    			printf("YES
    ");
    			return 0;
    		}
    	printf("NO
    ");
    	return 0;
    }
    

    当时迷雾正浓 谎称歌颂
    斥退肆虐的兽 幸得荣宠
    笑我成疯成魔 呐喊汹涌
    情深索性无终 登上灵鹫

    ——《你是我遥不可及的梦》By 苍穹/papaw泡泡

    > Link 你是我遥不可及的梦-Bilibili

    欢迎转载٩(๑❛ᴗ❛๑)۶,请在转载文章末尾附上原博文网址~
  • 相关阅读:
    Extjs4.x Ext.tree.Panel基本树控件的使用案例、源码
    Extjs4 autoload和iframe的取舍
    Extjs4 文件目录结构
    IIS7.5 配置MVC3.0 伪静态,不能访问html伪静态页面
    DB2存储过程模版
    C#后台调用跨域MVC服务,带Cookie验证
    基于SenchaTouch项目案例
    EF Code First DataAnnotations
    找不到方法:“Void System.Data.Objects.ObjectContextOptions.set_UseConsistentNullReferenceBehavior(Boolean)”。
    Babylon 3D engine (Silverlight)
  • 原文地址:https://www.cnblogs.com/LuckyGlass-blog/p/14450129.html
Copyright © 2011-2022 走看看