zoukankan      html  css  js  c++  java
  • 【BZOJ3626】【LNOI2014】LCA (树剖+离线)

    Description

    给出一个n个节点的有根树(编号为0到n-1,根节点为0)。一个点的深度定义为这个节点到根的距离+1。
    设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先。
    有q次询问,每次询问给出l r z,求sigma_{l<=i<=r}dep[LCA(i,z)]。
    (即,求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和)答案对201314取模。

     

    这个题是大饺子安利给我的,然后顺带学了一发树剖(好弱啊)。

    这个题解讲的很好啦w:http://www.cnblogs.com/JoeFan/p/4229141.html

    maya代码慢的不忍直视 qwq4332 ms

      1 #include <cstdio>
      2 #include <cstdlib>
      3 #include <iostream>
      4 #include <algorithm>
      5 #define p 201314
      6 #define MaxN 50010
      7 #define MaxM 100010
      8 #define LL long long
      9 
     10 using namespace std;
     11 int n, q, tot = 0;
     12 int ans[MaxN], HEAD[MaxN];
     13 struct rec{
     14     int nxt, z, ord, ty;
     15 }da[MaxM];
     16 
     17 void read(int &x){
     18     x = 0; char c = getchar();
     19     while (c < '0' || c > '9') c = getchar();
     20     while (c >= '0' && c <= '9') x = x*10 + c-'0', c = getchar();
     21 }
     22 
     23 namespace Segtree{
     24     int S = 0, root = 1;
     25     int ch[MaxM][2];
     26     LL mark[MaxM], tree[MaxM], len[MaxM];
     27     
     28     #define l ch[x][0]
     29     #define r ch[x][1]
     30     
     31     void updata(int x, LL c){
     32         if (!x) return;
     33         tree[x] = tree[x] + len[x] * c;
     34         mark[x] += c;
     35     }
     36     
     37     void Merge(int x){
     38         len[x] = len[l]+len[r];
     39         tree[x] = tree[l] + tree[r];
     40     }
     41     
     42     void down(int x){
     43         updata(l, mark[x]);
     44         updata(r, mark[x]);    
     45         mark[x] = 0ll;
     46     }    
     47     
     48     void Build(int &x, int a, int b){
     49         x = ++S;
     50         //cout<<x<<" "<<a<<" "<<b<<endl;
     51         if (a == b) {
     52             len[x] = 1ll; return;
     53         }
     54         int mid = (a+b) >> 1;
     55         Build(ch[x][0], a, mid);
     56         Build(ch[x][1], mid+1, b);
     57         Merge(x);
     58     }
     59     
     60     void change(int x, int a, int b, int L, int R, LL c){
     61         down(x);
     62         //printf("x:%d l:%d r:%d L:%d R:%d
    ", x, a, b, L, R);
     63         if (L <= a && R >= b){
     64             updata(x, c);
     65             return;
     66         }
     67         int mid = (a+b) >> 1;
     68         if (L <= mid) change(l, a, mid, L, R, c);
     69         if (R > mid) change(r, mid+1, b, L, R, c);
     70         Merge(x);
     71     }
     72     
     73     LL query(int x, int a, int b, int L, int R){
     74         down(x);
     75         if (L <= a && R >= b) return tree[x];
     76         LL ret = 0ll;
     77         int mid = (a+b) >> 1;
     78         if (L <= mid) ret += query(l, a, mid, L, R);
     79         if (R > mid) ret += query(r, mid+1, b, L, R);
     80         Merge(x);
     81         return ret;        
     82     }
     83     
     84 };
     85 
     86 
     87 #undef l
     88 #undef r
     89 
     90 namespace HL_Decomp{
     91     int S = 0, cnt = 0;
     92     int head[MaxN], dfn[MaxN], depth[MaxN], son[MaxN], fa[MaxN], sz[MaxN], top[MaxN];
     93     struct road{
     94         int v, nxt;
     95     }E[MaxM];
     96     
     97     void adde(int u, int v){
     98         E[++S] = (road) {v, head[u]};
     99         head[u] = S;
    100     }
    101     
    102     void dfs1(int u){
    103         sz[u] = 1;
    104         int MaxSon = 0;
    105         for (int i = head[u], v; i; i = E[i].nxt){
    106             v = E[i].v;
    107             if (v == fa[u]) continue;
    108             fa[v] = u; depth[v] = depth[u]+1;
    109             dfs1(v); sz[u] += sz[v];
    110             if (sz[v] > MaxSon) MaxSon = sz[v], son[u] = v;
    111         }
    112     }
    113     
    114     void dfs2(int u, int Top){
    115         if (!u) return;
    116         top[u] = Top; dfn[u] = ++cnt;
    117         dfs2(son[u], Top);
    118         for (int i = head[u]; i; i = E[i].nxt) {
    119             if (E[i].v != son[u] && E[i].v != fa[u]) dfs2(E[i].v, E[i].v);
    120         }
    121     }
    122     
    123     void change(int u, int v, LL c){
    124         while (top[u] != top[v]){
    125             if (depth[top[u]] > depth[top[v]]) std::swap(u, v);
    126             Segtree::change(1, 1, n, dfn[top[v]], dfn[v], c);
    127             v = fa[top[v]];
    128         }
    129         if (depth[u] > depth[v]) std::swap(u, v);
    130         Segtree::change(1, 1, n, dfn[u], dfn[v], c);
    131     }
    132     
    133     LL query(int u, int v){
    134         LL ret = 0ll;
    135         while (top[u] != top[v]){
    136             if (depth[top[u]] > depth[top[v]]) std::swap(u, v);
    137             ret += Segtree::query(1, 1, n, dfn[top[v]], dfn[v]);
    138             v = fa[top[v]];
    139         }
    140         if (depth[u] > depth[v]) std::swap(u, v);
    141         ret += Segtree::query(1, 1, n, dfn[u], dfn[v]);
    142         return ret % p;
    143     }
    144     
    145 }
    146 
    147 void Read_Data(){
    148     read(n); read(q);
    149     for (int i = 2, u; i <= n; i++) {
    150         read(u);
    151         HL_Decomp::adde(u+1, i);
    152     }
    153 }
    154 
    155 void ADD(int a, int b, int c, int d){
    156     da[++tot] = (rec) {HEAD[a], b, c, d};
    157     HEAD[a] = tot;
    158 }
    159 
    160 void Solve(){
    161     int Root;
    162     HL_Decomp::dfs1(1);
    163     HL_Decomp::dfs2(1, 1);
    164     Segtree::Build(Root, 1, n);
    165     for (int i = 1, l, r, z; i <= q; i++) {
    166         read(l); read(r); read(z); l++, r++, z++;
    167         ADD(l-1, z, i, -1); ADD(r, z, i, 1);
    168     }
    169     for (int i = 1; i <= n; i++){
    170         HL_Decomp::change(1, i, 1ll);
    171         for (int j = HEAD[i]; j; j = da[j].nxt){
    172             ans[da[j].ord] += (int)HL_Decomp::query(1, da[j].z) * da[j].ty;
    173         }
    174     }
    175     for (int i = 1; i <= q; i++) printf("%d
    ", (ans[i] + p) % p);
    176 }
    177 
    178 int main()
    179 {
    180     Read_Data();
    181     Solve();
    182     return 0;
    183 }
  • 相关阅读:
    Flutter图片选择 image_picker(官方)插件使用详解
    androidstudo如何跨越这个厚厚的墙,亲测有效 Could not resolve com.android.tools.build:gradle:
    qwq。。胡诌qwq
    关于很狗的军训qwq
    Leetcode每日一题 503.下一个更大元素II
    C++ 关于volatlie
    C++虚成员函数与动态联编
    graphics pipeline
    pointer or function
    线段树
  • 原文地址:https://www.cnblogs.com/Lukaluka/p/5131466.html
Copyright © 2011-2022 走看看