zoukankan      html  css  js  c++  java
  • hihocoder-1419 后缀数组四·重复旋律4 求连续重复次数最多的子串

    对于重复次数,如果确定了重复子串的长度len,那重复次数k=lcp(start,start+len)/len+1。而暴力枚举start和len的复杂度是O(n^2),不能接受。而有一个规律,若我们只枚举len的整数倍作为起始,如果将它向前移动小于len位可以构成重复次数更长的串,那么那个位置p=start-len+lcp%len。所以每次我们计算两者并求max再与ans做max即可。

    #include <cstdio>
    #include <string>
    #include <iostream>
    #include <set>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cstring>
    #include <queue>
    #define LL int
    using namespace std;
    const LL N = 100055;
    
    class SF
    {
        //N:数组大小
    public:
        int x[N], y[N], c[N];
        int Height[N], str[N], SA[N], Rank[N];//Height数组从2开始,SA记录Rank=i的下标
        int slen;
        int m = 1050;//字符集处理大小(传入如果不是数字,需要做位移转换)
        bool cmp(int* r, int a, int b, int l) {
            return r[a] == r[b] && r[a + l] == r[b + l];
        }
        void Suffix(int n) {
            ++n;
            int i, j, p;
            for (i = 0; i < m; ++i) c[i] = 0;
            for (i = 0; i < n; ++i) c[x[i] = str[i]]++;
            for (i = 1; i < m; ++i) c[i] += c[i - 1];
            for (i = n - 1; i >= 0; --i) SA[--c[x[i]]] = i;
            for (j = 1; j <= n; j <<= 1) {
                p = 0;
                for (i = n - j; i < n; ++i) y[p++] = i;
                for (i = 0; i < n; ++i) if (SA[i] >= j) y[p++] = SA[i] - j;
                for (i = 0; i < m; ++i) c[i] = 0;
                for (i = 0; i < n; ++i) c[x[y[i]]]++;
    
                for (i = 1; i < m; ++i) c[i] += c[i - 1];
                for (i = n - 1; i >= 0; --i) SA[--c[x[y[i]]]] = y[i];
    
                swap(x, y);
                p = 1; x[SA[0]] = 0;
                for (i = 1; i < n; ++i) {
                    x[SA[i]] = cmp(y, SA[i - 1], SA[i], j) ? p - 1 : p++;
                }
                if (p >= n)break;
                m = p;
            }
    
            int k = 0;
            n--;
            for (i = 0; i <= n; ++i) Rank[SA[i]] = i;
            for (i = 0; i < n; ++i) {
                if (k)--k;
                j = SA[Rank[i] - 1];
                while (str[i + k] == str[j + k])++k;
                Height[Rank[i]] = k;
                //cout << k << endl;
            }
        }
        static const int bitlen = 25;
        LL lg2(LL p)//计算log2(n)
        {
            return (LL)(log(p) / log(2));
        }
        LL dp[bitlen][N];
        LL bit[bitlen];
        void initRMQ()//初始化
        {
            bit[0] = 1;
            for (int i = 1; i < bitlen; i++) bit[i] = 2 * bit[i - 1];
            for (int i = 0; i <= slen; i++)
                dp[0][i] = Height[i];
            dp[0][0] = dp[0][1] = 0;
            for (LL i = 1; bit[i] < slen + 1; i++)
                for (LL j = 0; j + bit[i] <= slen + 1; j++)
                    dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + bit[i - 1]]);
        }
        LL query(LL l, LL r)//查询两个Rank之间的lcp
        {
            if (r == l) return slen - SA[l];
            if (l > r) swap(l, r);
            l++;
            LL mig = lg2(r - l + 1.0);
            return min(dp[mig][l], dp[mig][r - bit[mig] + 1]);
        }
        void init(string &s)
        {
            slen = s.size();
            for (int i = 0; i < slen; i++)
                str[i] = s[i] - 'a' + 2;//如果是字符,映射成从1开始的序列
            str[slen] = 1;//1作为结束符,防止越界
            Suffix(slen);
            initRMQ();
        }
        int solve()
        {
            int ans = 0;
            for (int len = 1; len <= slen; len++)
            {
                for (int i = 0; i+len < slen; i+=len)
                {
                    int r1 = Rank[i], r2 = Rank[i+ len];
                    int lcp = query(r1, r2);
                    ans = max(ans, lcp / len + 1);
                    if (i - len + lcp%len >= 0)
                    {
                        lcp = query(Rank[i - len + lcp%len], Rank[i + lcp%len]);
                        ans = max(ans, lcp /  len + 1);
                    }    
                }
            }
            return ans;
        }
    }sf;
    int main()
    {
        cin.sync_with_stdio(false);
        string s;
        while (cin >> s)
        {
            sf.init(s);
            cout << sf.solve() << endl;
        }
        return 0;
    }
  • 相关阅读:
    FIDDLER的使用方法及技巧总结(连载一)FIDDLER快速入门及使用场景
    Swiper轮播插件的花式用法
    前端Js框架汇总
    前端开发06
    前端开发面试题05
    前端开发面试题04
    原生js和jquery实现图片轮播特效
    如何判断前端开发能力?
    前端面试题03
    团队冲刺09
  • 原文地址:https://www.cnblogs.com/LukeStepByStep/p/7570138.html
Copyright © 2011-2022 走看看