zoukankan      html  css  js  c++  java
  • 支持向量机(SVM)之数学公式详细推导

    一、概述

    1、含义:

    支持向量机(support vector machine,SVM)是一种二类分类器,它的基本模型是定义在特征空间上的间隔最大化的线性分类器,通过引入核函数,也可以作为非线性分类器来解决非线性数据集的分类问题。

    2、求解:

    支持向量机的学习策略是间隔最大化,可转化为一个求解凸二次规划的问题。

    3、模型:

    支持向量机模型从简单到复杂可分为:线性可分支持向量机、线性支持向量机和非线性支持向量机。

    线性可分支持向量机:训练数据线性可分,通过硬间隔最大化,学习一个线性分类器;

    线性支持向量机:训练数据近似线性可分,通过软间隔最大化,学习一个线性分类器;

    非线性支持向量机:训练数据线性不可分,通过使用核技巧(kernel trick)及软间隔最大化,学习一个非线性分类器。

    本次数学推导就是推导以上三个模型,不涉及SMO算法的推导。考虑到公式比较多,所以是用手写笔记的形式进行整理。

    二、数学推导

  • 相关阅读:
    软件测试homework2
    软件测试homework1
    ubuntu14 安装QUME+xv6
    判断两线段是否相交 模板
    并查集 HDU1558
    并查集 HDU1272
    并查集 HDU1232
    数据结构之单向链表 UVa11988
    Java大数 字符串处理 HDU2100
    Java大数中的小数 HDU1753
  • 原文地址:https://www.cnblogs.com/Luv-GEM/p/10628046.html
Copyright © 2011-2022 走看看