zoukankan      html  css  js  c++  java
  • 一阶卡尔曼滤波算法的C#实现

    //FilterKalman.cs
    
    namespace FusionFiltering
    {
    
        public class FilterKalman
        {
            private double A = 1;
            private double B = 0;
            private double H = 1;
    
            private double R;
            private double Q;
    
            private double cov = double.NaN;
            private double x = double.NaN;
    
            public FilterKalman(double R, double Q, double A, double B, double H)
            {
                this.R = R;  //过程噪声 
                this.Q = Q;  //测量噪声
    
                this.A = A;  //状态转移矩阵
                this.B = B;  //控制矩阵  u为控制向量
                this.H = H;  //将估计范围与单位转化为与系统变量(或者说测量值)一致的范围与单位
    
                this.cov = double.NaN;
                this.x = double.NaN; // estimated signal without noise
            }
    
            public FilterKalman(double R, double Q)
            {
                this.R = R;
                this.Q = Q;
            }
    
            public double filter(double measurement, double u)
            {
                if (double.IsNaN(this.x)) {
                    this.x = (1 / this.H) * measurement;
                    this.cov = (1 / this.H) * this.Q * (1 / this.H);
                } else {
                    double predX = (this.A * this.x) + (this.B * u);
                    double predCov = ((this.A * this.cov) * this.A) + this.Q;
    
                    // Kalman gain
                    double K = predCov * this.H * (1 / ((this.H * predCov * this.H) + this.Q));
    
                    // Correction
                    this.x = predX + K * (measurement - (this.H * predX));
                    this.cov = predCov - (K * this.H * predCov);
                }
                return this.x;
            }
    
            public double filter(double measurement)
            {
                double u = 0;
                if (double.IsNaN(this.x)) {
                    this.x = (1 / this.H) * measurement;
                    this.cov = (1 / this.H) * this.Q * (1 / this.H);
                } else {
                    double predX = (this.A * this.x) + (this.B * u);
                    double predCov = ((this.A * this.cov) * this.A) + this.R;
    
                    // Kalman gain
                    double K = predCov * this.H * (1 / ((this.H * predCov * this.H) + this.Q));
    
                    // Correction
                    this.x = predX + K * (measurement - (this.H * predX));
                    this.cov = predCov - (K * this.H * predCov);
                }
                return this.x;
            }
    
            public double lastMeasurement()
            {
                return this.x;
            }
    
            public void setMeasurementNoise(double noise)
            {
                this.Q = noise;
            }
    
            public void setProcessNoise(double noise)
            {
                this.R = noise;
            }
        }
    }
    //ProgramTestData.cs
    
    using System;
    using System.Linq;
    
    namespace FusionFiltering
    {
        public class ProgramTest
        {
            /// <summary>
            /// kalman滤波测试1
            /// </summary>
            [System.Diagnostics.Conditional("DEBUG")]
            public static void TestKalmanFilter1()
            {
                Console.WriteLine("FilterKalman Usage");
    
                FilterKalman test = new FilterKalman(0.008, 0.1);
                double[] testData = { 66, 64, 63, 63, 63, 66, 65, 67, 58 };
                foreach (var x in testData) {
                    Console.WriteLine("Input data: {0:#,##0.00}, Filtered data:{1:#,##0.000}", x, test.filter(x));
                }
            }
    
            /// <summary>
            /// Example Usage with controlled input
            /// </summary>
            [System.Diagnostics.Conditional("DEBUG")]
            public static void TestKalmanFilterWithControlled()
            {
                Console.WriteLine("FilterKalman Usage with controlled input");
    
                FilterKalman test = new FilterKalman(0.008, 0.1, 1, 1, 1);
                double[] testData = { 66, 64, 63, 63, 63, 66, 65, 67, 58 };
                double u = 0.2;
                foreach (var x in testData) {
                    Console.WriteLine("Input data: {0:#,##0.00}, Filtered data:{1:#,##0.000}", x, test.filter(x, u));
                }
    
            }
        }
    }
    //Program.cs
    
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Threading.Tasks;
    using FusionFiltering;
    namespace ConsoleApplication1
    {
        class Program
        {
            static void Main(string[] args)
            {
    
                ProgramTest.TestKalmanFilter1();
                Console.ReadKey();
                Console.WriteLine();
                ProgramTest.TestKalmanFilterWithControlled();
                Console.ReadKey();
    
            }
    }
    }

    效果:

  • 相关阅读:
    多线程与MySQL(十)
    多进程与多线程(九)
    异常处理与网络编程(八)
    面向对象,绑定方法与异常处理(七)
    模块与对象(六)
    包与模块(五)
    迭代器与函数Python学习(四)
    函数与装饰器Python学习(三)
    数据库
    并发编程
  • 原文地址:https://www.cnblogs.com/Lxk0825/p/13899521.html
Copyright © 2011-2022 走看看