zoukankan      html  css  js  c++  java
  • 矩阵的迹及迹的求导

    关于最小二乘问题的求解,之前已有梯度下降法,还有比较快速的牛顿迭代。今天来介绍一种方法,是基于矩阵求导来计算的,它的计算方式更加简洁高效,不需要大量迭代,只需解一个正规方程组。在开始之前,首先来认识一个概念和一些用到的定理。矩阵的迹定义如下

    一个的矩阵的迹是指的主对角线上各元素的总和,记作。即

               

                            

                 

    好了,有了上述7个定理,就可以来求最小二乘解了。设

      

    那么进一步得到

        

    接下来会涉及到矩阵求导,因为

        

    那么进一步利用矩阵求导并利用上述定理,得到

        

    我们知道在极值点处梯度值为零,即

        

    上述得到的方程组叫做正规方程组,那么最终得到

        

    这样最小二乘问题只需解一个线性方程组即可,不再需要像梯度下降那样迭代了。

    既然说到了正规方程组,在介绍一种方程组,叫做超定方程组,它的定义为:把方程个数大于未知量个数的方

    程组叫做超定方程组。通常来说,对于一个超定方程组来说,求最小二乘解只需要两边同时乘的转

    置,然后得到正规方程组,然后解这个方程就得到了最小二乘解。

  • 相关阅读:
    git clone time out
    Window版本的nvm下载安装以及配置
    jdk安装目录查询
    idea 快捷键
    faac简介、编译、使用
    socket编程实例TCP
    jsoncpp简介、下载、编译、使用
    时间时区概念及常用时间函数
    开启博客之旅
    找回了用户名和密码
  • 原文地址:https://www.cnblogs.com/Lxk0825/p/13987066.html
Copyright © 2011-2022 走看看