一道很好的几何题。要求是给出一些圆,按顺序覆盖上去,问哪些圆是可以被看见的。
看刘汝佳的书,开始的时候不明白“每个可见部分都是由一些‘小圆弧’围城的”这样又怎么样,直到我看了他的代码以后才懂。其实意思就是,因为每个可见部分都是由小圆弧围成,所以,如果我们将小圆弧中点(不会是圆与圆的交点)相对于弧的位置向里或向外稍微移动一下,然后找到有哪个圆最后覆盖在在那上面,那么这个圆必定能被看见。
刚接触几何,表示还真想不到可以这样做,所以就觉得这个做法实在太妙了!
代码如下:
View Code
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <set> 5 #include <vector> 6 #include <iostream> 7 #include <algorithm> 8 9 using namespace std; 10 11 struct Point { 12 double x, y; 13 Point() {} 14 Point(double x, double y) : x(x), y(y) {} 15 } ; 16 template<class T> T sqr(T x) { return x * x;} 17 inline double ptDis(Point a, Point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));} 18 19 // basic calculations 20 typedef Point Vec; 21 Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);} 22 Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);} 23 Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);} 24 Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);} 25 26 const double EPS = 5e-13; 27 const double PI = acos(-1.0); 28 inline int sgn(double x) { return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);} 29 bool operator < (Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y);} 30 bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;} 31 32 inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;} 33 inline double vecLen(Vec x) { return sqrt(sqr(x.x) + sqr(x.y));} 34 inline double angle(Vec v) { return atan2(v.y, v.x);} 35 inline double angle(Vec a, Vec b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));} 36 inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;} 37 inline double triArea(Point a, Point b, Point c) { return fabs(crossDet(b - a, c - a));} 38 inline Vec vecUnit(Vec x) { return x / vecLen(x);} 39 inline Vec rotate(Vec x, double rad) { return Vec(x.x * cos(rad) - x.y * sin(rad), x.x * sin(rad) + x.y * cos(rad));} 40 Vec normal(Vec x) { 41 double len = vecLen(x); 42 return Vec(- x.y / len, x.x / len); 43 } 44 45 struct Line { 46 Point s, t; 47 Line() {} 48 Line(Point s, Point t) : s(s), t(t) {} 49 Point point(double x) { 50 return s + (t - s) * x; 51 } 52 Line move(double x) { 53 Vec nor = normal(t - s); 54 nor = nor / vecLen(nor) * x; 55 return Line(s + nor, t + nor); 56 } 57 Vec vec() { return t - s;} 58 } ; 59 typedef Line Seg; 60 61 inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(a - x, b - x)) == 0 && sgn(dotDet(a - x, b - x)) < 0;} 62 inline bool onSeg(Point x, Seg s) { return onSeg(x, s.s, s.t);} 63 64 // 0 : not intersect 65 // 1 : proper intersect 66 // 2 : improper intersect 67 int segIntersect(Point a, Point c, Point b, Point d) { 68 Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d; 69 int a_bc = sgn(crossDet(v1, v2)); 70 int b_cd = sgn(crossDet(v2, v3)); 71 int c_da = sgn(crossDet(v3, v4)); 72 int d_ab = sgn(crossDet(v4, v1)); 73 if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1; 74 if (onSeg(b, a, c) && c_da) return 2; 75 if (onSeg(c, b, d) && d_ab) return 2; 76 if (onSeg(d, c, a) && a_bc) return 2; 77 if (onSeg(a, d, b) && b_cd) return 2; 78 return 0; 79 } 80 inline int segIntersect(Seg a, Seg b) { return segIntersect(a.s, a.t, b.s, b.t);} 81 82 // point of the intersection of 2 lines 83 Point lineIntersect(Point P, Vec v, Point Q, Vec w) { 84 Vec u = P - Q; 85 double t = crossDet(w, u) / crossDet(v, w); 86 return P + v * t; 87 } 88 inline Point lineIntersect(Line a, Line b) { return lineIntersect(a.s, a.t - a.s, b.s, b.t - b.s);} 89 90 // Warning: This is a DIRECTED Distance!!! 91 double pt2Line(Point x, Point a, Point b) { 92 Vec v1 = b - a, v2 = x - a; 93 return crossDet(v1, v2) / vecLen(v1); 94 } 95 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);} 96 97 double pt2Seg(Point x, Point a, Point b) { 98 if (a == b) return vecLen(x - a); 99 Vec v1 = b - a, v2 = x - a, v3 = x - b; 100 if (sgn(dotDet(v1, v2)) < 0) return vecLen(v2); 101 if (sgn(dotDet(v1, v3)) > 0) return vecLen(v3); 102 return fabs(crossDet(v1, v2)) / vecLen(v1); 103 } 104 inline double pt2Seg(Point x, Seg s) { return pt2Seg(x, s.s, s.t);} 105 106 struct Poly { 107 vector<Point> pt; 108 Poly() {} 109 Poly(vector<Point> pt) : pt(pt) {} 110 double area() { 111 double ret = 0.0; 112 int sz = pt.size(); 113 for (int i = 1; i < sz; i++) { 114 ret += crossDet(pt[i], pt[i - 1]); 115 } 116 return fabs(ret / 2.0); 117 } 118 } ; 119 120 struct Circle { 121 Point c; 122 double r; 123 Circle() {} 124 Circle(Point c, double r) : c(c), r(r) {} 125 Point point(double a) { 126 return Point(c.x + cos(a) * r, c.y + sin(a) * r); 127 } 128 } ; 129 130 int lineCircleIntersect(Line L, Circle C, double &t1, double &t2, vector<Point> &sol) { 131 double a = L.s.x, b = L.t.x - C.c.x, c = L.s.y, d = L.t.y - C.c.y; 132 double e = sqr(a) + sqr(c), f = 2 * (a * b + c * d), g = sqr(b) + sqr(d) - sqr(C.r); 133 double delta = sqr(f) - 4.0 * e * g; 134 if (sgn(delta) < 0) return 0; 135 if (sgn(delta) == 0) { 136 t1 = t2 = -f / (2.0 * e); 137 sol.push_back(L.point(t1)); 138 return 1; 139 } 140 t1 = (-f - sqrt(delta)) / (2.0 * e); 141 sol.push_back(L.point(t1)); 142 t2 = (-f + sqrt(delta)) / (2.0 * e); 143 sol.push_back(L.point(t2)); 144 return 2; 145 } 146 147 int lineCircleIntersect(Line L, Circle C, vector<Point> &sol) { 148 Vec dir = L.t - L.s, nor = normal(dir); 149 Point mid = lineIntersect(C.c, nor, L.s, dir); 150 double len = sqr(C.r) - sqr(ptDis(C.c, mid)); 151 if (sgn(len) < 0) return 0; 152 if (sgn(len) == 0) { 153 sol.push_back(mid); 154 return 1; 155 } 156 Vec dis = vecUnit(dir); 157 len = sqrt(len); 158 sol.push_back(mid + dis * len); 159 sol.push_back(mid - dis * len); 160 return 2; 161 } 162 163 // -1 : coincide 164 int circleCircleIntersect(Circle C1, Circle C2, vector<Point> &sol) { 165 double d = vecLen(C1.c - C2.c); 166 if (sgn(d) == 0) { 167 if (sgn(C1.r - C2.r) == 0) { 168 return -1; 169 } 170 return 0; 171 } 172 if (sgn(C1.r + C2.r - d) < 0) return 0; 173 if (sgn(fabs(C1.r - C2.r) - d) > 0) return 0; 174 double a = angle(C2.c - C1.c); 175 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d)); 176 Point p1 = C1.point(a - da), p2 = C1.point(a + da); 177 sol.push_back(p1); 178 if (p1 == p2) return 1; 179 sol.push_back(p2); 180 return 2; 181 } 182 183 void circleCircleIntersect(Circle C1, Circle C2, vector<double> &sol) { 184 double d = vecLen(C1.c - C2.c); 185 if (sgn(d) == 0) return ; 186 if (sgn(C1.r + C2.r - d) < 0) return ; 187 if (sgn(fabs(C1.r - C2.r) - d) > 0) return ; 188 double a = angle(C2.c - C1.c); 189 double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d)); 190 sol.push_back(a - da); 191 sol.push_back(a + da); 192 } 193 194 int tangent(Point p, Circle C, vector<Vec> &sol) { 195 Vec u = C.c - p; 196 double dist = vecLen(u); 197 if (dist < C.r) return 0; 198 if (sgn(dist - C.r) == 0) { 199 sol.push_back(rotate(u, PI / 2.0)); 200 return 1; 201 } 202 double ang = asin(C.r / dist); 203 sol.push_back(rotate(u, -ang)); 204 sol.push_back(rotate(u, ang)); 205 return 2; 206 } 207 208 // ptA : points of tangency on circle A 209 // ptB : points of tangency on circle B 210 int tangent(Circle A, Circle B, vector<Point> &ptA, vector<Point> &ptB) { 211 if (A.r < B.r) { 212 swap(A, B); 213 swap(ptA, ptB); 214 } 215 int d2 = sqr(A.c.x - B.c.x) + sqr(A.c.y - B.c.y); 216 int rdiff = A.r - B.r, rsum = A.r + B.r; 217 if (d2 < sqr(rdiff)) return 0; 218 double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x); 219 if (d2 == 0 && A.r == B.r) return -1; 220 if (d2 == sqr(rdiff)) { 221 ptA.push_back(A.point(base)); 222 ptB.push_back(B.point(base)); 223 return 1; 224 } 225 double ang = acos((A.r - B.r) / sqrt(d2)); 226 ptA.push_back(A.point(base + ang)); 227 ptB.push_back(B.point(base + ang)); 228 ptA.push_back(A.point(base - ang)); 229 ptB.push_back(B.point(base - ang)); 230 if (d2 == sqr(rsum)) { 231 ptA.push_back(A.point(base)); 232 ptB.push_back(B.point(PI + base)); 233 } else if (d2 > sqr(rsum)) { 234 ang = acos((A.r + B.r) / sqrt(d2)); 235 ptA.push_back(A.point(base + ang)); 236 ptB.push_back(B.point(PI + base + ang)); 237 ptA.push_back(A.point(base - ang)); 238 ptB.push_back(B.point(PI + base - ang)); 239 } 240 return (int) ptA.size(); 241 } 242 243 /****************** template above *******************/ 244 245 #define DEC(i, a, b) for (int i = (a); i >= (b); i--) 246 #define REP(i, n) for (int i = 0; i < (n); i++) 247 #define _clr(x) memset(x, 0, sizeof(x)) 248 #define PB push_back 249 Circle c[111]; 250 251 int topCircle(Point x, int n) { 252 DEC(i, n - 1, 0) { 253 if (ptDis(c[i].c, x) < c[i].r) return i; 254 } 255 return -1; 256 } 257 258 int main() { 259 // freopen("in", "r", stdin); 260 int n; 261 while (cin >> n && n) { 262 REP(i, n) cin >> c[i].c.x >> c[i].c.y >> c[i].r; 263 set<int> vis; 264 vis.clear(); 265 REP(i, n) { 266 vector<double> pos; 267 pos.clear(); 268 pos.PB(0.0); 269 pos.PB(2.0 * PI); 270 REP(j, n) { 271 circleCircleIntersect(c[i], c[j], pos); 272 } 273 sort(pos.begin(), pos.end()); 274 int sz = pos.size() - 1; 275 REP(j, sz) { 276 double mid = (pos[j] + pos[j + 1]) / 2.0; 277 for (int d = -1; d <= 1; d += 2) { 278 double nr = c[i].r + d * EPS; 279 int t = topCircle(Point(c[i].c.x + nr * cos(mid), c[i].c.y + nr * sin(mid)), n); 280 if (~t) vis.insert(t); 281 } 282 } 283 } 284 cout << vis.size() << endl; 285 } 286 return 0; 287 }
——written by Lyon