zoukankan      html  css  js  c++  java
  • LA 2572 Viva Confetti (Geometry.Circle)

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=problem_stats&problemid=573&category=

      一道很好的几何题。要求是给出一些圆,按顺序覆盖上去,问哪些圆是可以被看见的。

      看刘汝佳的书,开始的时候不明白“每个可见部分都是由一些‘小圆弧’围城的”这样又怎么样,直到我看了他的代码以后才懂。其实意思就是,因为每个可见部分都是由小圆弧围成,所以,如果我们将小圆弧中点(不会是圆与圆的交点)相对于弧的位置向里或向外稍微移动一下,然后找到有哪个圆最后覆盖在在那上面,那么这个圆必定能被看见。

      刚接触几何,表示还真想不到可以这样做,所以就觉得这个做法实在太妙了!

    代码如下:

    View Code
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cmath>
      4 #include <set>
      5 #include <vector>
      6 #include <iostream>
      7 #include <algorithm>
      8 
      9 using namespace std;
     10 
     11 struct Point {
     12     double x, y;
     13     Point() {}
     14     Point(double x, double y) : x(x), y(y) {}
     15 } ;
     16 template<class T> T sqr(T x) { return x * x;}
     17 inline double ptDis(Point a, Point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));}
     18 
     19 // basic calculations
     20 typedef Point Vec;
     21 Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);}
     22 Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);}
     23 Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);}
     24 Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);}
     25 
     26 const double EPS = 5e-13;
     27 const double PI = acos(-1.0);
     28 inline int sgn(double x) { return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);}
     29 bool operator < (Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y);}
     30 bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;}
     31 
     32 inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
     33 inline double vecLen(Vec x) { return sqrt(sqr(x.x) + sqr(x.y));}
     34 inline double angle(Vec v) { return atan2(v.y, v.x);}
     35 inline double angle(Vec a, Vec b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));}
     36 inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
     37 inline double triArea(Point a, Point b, Point c) { return fabs(crossDet(b - a, c - a));}
     38 inline Vec vecUnit(Vec x) { return x / vecLen(x);}
     39 inline Vec rotate(Vec x, double rad) { return Vec(x.x * cos(rad) - x.y * sin(rad), x.x * sin(rad) + x.y * cos(rad));}
     40 Vec normal(Vec x) {
     41     double len = vecLen(x);
     42     return Vec(- x.y / len, x.x / len);
     43 }
     44 
     45 struct Line {
     46     Point s, t;
     47     Line() {}
     48     Line(Point s, Point t) : s(s), t(t) {}
     49     Point point(double x) {
     50         return s + (t - s) * x;
     51     }
     52     Line move(double x) {
     53         Vec nor = normal(t - s);
     54         nor = nor / vecLen(nor) * x;
     55         return Line(s + nor, t + nor);
     56     }
     57     Vec vec() { return t - s;}
     58 } ;
     59 typedef Line Seg;
     60 
     61 inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(a - x, b - x)) == 0 && sgn(dotDet(a - x, b - x)) < 0;}
     62 inline bool onSeg(Point x, Seg s) { return onSeg(x, s.s, s.t);}
     63 
     64 // 0 : not intersect
     65 // 1 : proper intersect
     66 // 2 : improper intersect
     67 int segIntersect(Point a, Point c, Point b, Point d) {
     68     Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d;
     69     int a_bc = sgn(crossDet(v1, v2));
     70     int b_cd = sgn(crossDet(v2, v3));
     71     int c_da = sgn(crossDet(v3, v4));
     72     int d_ab = sgn(crossDet(v4, v1));
     73     if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1;
     74     if (onSeg(b, a, c) && c_da) return 2;
     75     if (onSeg(c, b, d) && d_ab) return 2;
     76     if (onSeg(d, c, a) && a_bc) return 2;
     77     if (onSeg(a, d, b) && b_cd) return 2;
     78     return 0;
     79 }
     80 inline int segIntersect(Seg a, Seg b) { return segIntersect(a.s, a.t, b.s, b.t);}
     81 
     82 // point of the intersection of 2 lines
     83 Point lineIntersect(Point P, Vec v, Point Q, Vec w) {
     84     Vec u = P - Q;
     85     double t = crossDet(w, u) / crossDet(v, w);
     86     return P + v * t;
     87 }
     88 inline Point lineIntersect(Line a, Line b) { return lineIntersect(a.s, a.t - a.s, b.s, b.t - b.s);}
     89 
     90 // Warning: This is a DIRECTED Distance!!!
     91 double pt2Line(Point x, Point a, Point b) {
     92     Vec v1 = b - a, v2 = x - a;
     93     return crossDet(v1, v2) / vecLen(v1);
     94 }
     95 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);}
     96 
     97 double pt2Seg(Point x, Point a, Point b) {
     98     if (a == b) return vecLen(x - a);
     99     Vec v1 = b - a, v2 = x - a, v3 = x - b;
    100     if (sgn(dotDet(v1, v2)) < 0) return vecLen(v2);
    101     if (sgn(dotDet(v1, v3)) > 0) return vecLen(v3);
    102     return fabs(crossDet(v1, v2)) / vecLen(v1);
    103 }
    104 inline double pt2Seg(Point x, Seg s) { return pt2Seg(x, s.s, s.t);}
    105 
    106 struct Poly {
    107     vector<Point> pt;
    108     Poly() {}
    109     Poly(vector<Point> pt) : pt(pt) {}
    110     double area() {
    111         double ret = 0.0;
    112         int sz = pt.size();
    113         for (int i = 1; i < sz; i++) {
    114             ret += crossDet(pt[i], pt[i - 1]);
    115         }
    116         return fabs(ret / 2.0);
    117     }
    118 } ;
    119 
    120 struct Circle {
    121     Point c;
    122     double r;
    123     Circle() {}
    124     Circle(Point c, double r) : c(c), r(r) {}
    125     Point point(double a) {
    126         return Point(c.x + cos(a) * r, c.y + sin(a) * r);
    127     }
    128 } ;
    129 
    130 int lineCircleIntersect(Line L, Circle C, double &t1, double &t2, vector<Point> &sol) {
    131     double a = L.s.x, b = L.t.x - C.c.x, c = L.s.y, d = L.t.y - C.c.y;
    132     double e = sqr(a) + sqr(c), f = 2 * (a * b + c * d), g = sqr(b) + sqr(d) - sqr(C.r);
    133     double delta = sqr(f) - 4.0 * e * g;
    134     if (sgn(delta) < 0) return 0;
    135     if (sgn(delta) == 0) {
    136         t1 = t2 = -f / (2.0 * e);
    137         sol.push_back(L.point(t1));
    138         return 1;
    139     }
    140     t1 = (-f - sqrt(delta)) / (2.0 * e);
    141     sol.push_back(L.point(t1));
    142     t2 = (-f + sqrt(delta)) / (2.0 * e);
    143     sol.push_back(L.point(t2));
    144     return 2;
    145 }
    146 
    147 int lineCircleIntersect(Line L, Circle C, vector<Point> &sol) {
    148     Vec dir = L.t - L.s, nor = normal(dir);
    149     Point mid = lineIntersect(C.c, nor, L.s, dir);
    150     double len = sqr(C.r) - sqr(ptDis(C.c, mid));
    151     if (sgn(len) < 0) return 0;
    152     if (sgn(len) == 0) {
    153         sol.push_back(mid);
    154         return 1;
    155     }
    156     Vec dis = vecUnit(dir);
    157     len = sqrt(len);
    158     sol.push_back(mid + dis * len);
    159     sol.push_back(mid - dis * len);
    160     return 2;
    161 }
    162 
    163 // -1 : coincide
    164 int circleCircleIntersect(Circle C1, Circle C2, vector<Point> &sol) {
    165     double d = vecLen(C1.c - C2.c);
    166     if (sgn(d) == 0) {
    167         if (sgn(C1.r - C2.r) == 0) {
    168             return -1;
    169         }
    170         return 0;
    171     }
    172     if (sgn(C1.r + C2.r - d) < 0) return 0;
    173     if (sgn(fabs(C1.r - C2.r) - d) > 0) return 0;
    174     double a = angle(C2.c - C1.c);
    175     double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d));
    176     Point p1 = C1.point(a - da), p2 = C1.point(a + da);
    177     sol.push_back(p1);
    178     if (p1 == p2) return 1;
    179     sol.push_back(p2);
    180     return 2;
    181 }
    182 
    183 void circleCircleIntersect(Circle C1, Circle C2, vector<double> &sol) {
    184     double d = vecLen(C1.c - C2.c);
    185     if (sgn(d) == 0) return ;
    186     if (sgn(C1.r + C2.r - d) < 0) return ;
    187     if (sgn(fabs(C1.r - C2.r) - d) > 0) return ;
    188     double a = angle(C2.c - C1.c);
    189     double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d));
    190     sol.push_back(a - da);
    191     sol.push_back(a + da);
    192 }
    193 
    194 int tangent(Point p, Circle C, vector<Vec> &sol) {
    195     Vec u = C.c - p;
    196     double dist = vecLen(u);
    197     if (dist < C.r) return 0;
    198     if (sgn(dist - C.r) == 0) {
    199         sol.push_back(rotate(u, PI / 2.0));
    200         return 1;
    201     }
    202     double ang = asin(C.r / dist);
    203     sol.push_back(rotate(u, -ang));
    204     sol.push_back(rotate(u, ang));
    205     return 2;
    206 }
    207 
    208 // ptA : points of tangency on circle A
    209 // ptB : points of tangency on circle B
    210 int tangent(Circle A, Circle B, vector<Point> &ptA, vector<Point> &ptB) {
    211     if (A.r < B.r) {
    212         swap(A, B);
    213         swap(ptA, ptB);
    214     }
    215     int d2 = sqr(A.c.x - B.c.x) + sqr(A.c.y - B.c.y);
    216     int rdiff = A.r - B.r, rsum = A.r + B.r;
    217     if (d2 < sqr(rdiff)) return 0;
    218     double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
    219     if (d2 == 0 && A.r == B.r) return -1;
    220     if (d2 == sqr(rdiff)) {
    221         ptA.push_back(A.point(base));
    222         ptB.push_back(B.point(base));
    223         return 1;
    224     }
    225     double ang = acos((A.r - B.r) / sqrt(d2));
    226     ptA.push_back(A.point(base + ang));
    227     ptB.push_back(B.point(base + ang));
    228     ptA.push_back(A.point(base - ang));
    229     ptB.push_back(B.point(base - ang));
    230     if (d2 == sqr(rsum)) {
    231         ptA.push_back(A.point(base));
    232         ptB.push_back(B.point(PI + base));
    233     } else if (d2 > sqr(rsum)) {
    234         ang = acos((A.r + B.r) / sqrt(d2));
    235         ptA.push_back(A.point(base + ang));
    236         ptB.push_back(B.point(PI + base + ang));
    237         ptA.push_back(A.point(base - ang));
    238         ptB.push_back(B.point(PI + base - ang));
    239     }
    240     return (int) ptA.size();
    241 }
    242 
    243 /****************** template above *******************/
    244 
    245 #define DEC(i, a, b) for (int i = (a); i >= (b); i--)
    246 #define REP(i, n) for (int i = 0; i < (n); i++)
    247 #define _clr(x) memset(x, 0, sizeof(x))
    248 #define PB push_back
    249 Circle c[111];
    250 
    251 int topCircle(Point x, int n) {
    252     DEC(i, n - 1, 0) {
    253         if (ptDis(c[i].c, x) < c[i].r) return i;
    254     }
    255     return -1;
    256 }
    257 
    258 int main() {
    259 //    freopen("in", "r", stdin);
    260     int n;
    261     while (cin >> n && n) {
    262         REP(i, n) cin >> c[i].c.x >> c[i].c.y >> c[i].r;
    263         set<int> vis;
    264         vis.clear();
    265         REP(i, n) {
    266             vector<double> pos;
    267             pos.clear();
    268             pos.PB(0.0);
    269             pos.PB(2.0 * PI);
    270             REP(j, n) {
    271                 circleCircleIntersect(c[i], c[j], pos);
    272             }
    273             sort(pos.begin(), pos.end());
    274             int sz = pos.size() - 1;
    275             REP(j, sz) {
    276                 double mid = (pos[j] + pos[j + 1]) / 2.0;
    277                 for (int d = -1; d <= 1; d += 2) {
    278                     double nr = c[i].r + d * EPS;
    279                     int t = topCircle(Point(c[i].c.x + nr * cos(mid), c[i].c.y + nr * sin(mid)), n);
    280                     if (~t) vis.insert(t);
    281                 }
    282             }
    283         }
    284         cout << vis.size() << endl;
    285     }
    286     return 0;
    287 }

    ——written by Lyon

  • 相关阅读:
    【12】简单SQL语句
    【11】分离与附加
    【10】约束
    CSS深入理解学习笔记之vertical-align
    CSS深入理解学习笔记之relative
    CSS深入理解学习笔记之z-index
    CSS深入理解学习笔记之margin
    CSS深入理解学习笔记之padding
    CSS深入理解学习笔记之border
    网页结构与表现原则
  • 原文地址:https://www.cnblogs.com/LyonLys/p/LA_2572_Lyon.html
Copyright © 2011-2022 走看看