http://acm.hdu.edu.cn/showproblem.php?pid=2243
搞了4天题,今天终于AC了!!!
这是一道自动机的题,不过要用到矩阵的知识才能完成。所以,在我做这题之前,我先做了poj 3233(n次连续矩阵和)以及poj 2440(状态转移借助矩阵解)作为这题的基础!
题意很简单,就是求长度在1到L中,含有给出字符串的串的个数。直接解是比较难接触答案的,所以要借助反面情况,也就是求不含给出字符串的串的个数。然后用全体情况来减回去,就能得到最终答案了!模2^64,只要稍微有点常识的,都能想到直接用unsigned long long来储存,计算机会自动帮你模的了。
刚开始做的时候,还想直接在建立自动机的时候就把矩阵构建好,结果搞着搞着,发现被我搞乱了。。。囧!所以最后还是把自动机建立好了,再把矩阵搞好!
代码如下:
View Code
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <cassert> 5 6 using namespace std; 7 typedef unsigned __int64 ull; 8 9 const int matSize = 30; 10 int curSize = matSize; 11 12 struct Matrix { 13 ull val[matSize][matSize]; 14 15 Matrix(bool ONE = false) { 16 for (int i = 0; i < curSize; i++) { 17 for (int j = 0; j < curSize; j++) { 18 val[i][j] = 0; 19 } 20 val[i][i] = ONE; 21 } 22 } 23 24 void print(int w = curSize, int l = curSize) { 25 for (int i = 0; i < w; i++) { 26 for (int j = 0; j < l; j++) { 27 if (j) putchar(' '); 28 printf("%I64u", val[i][j]); 29 } 30 puts(""); 31 } 32 } 33 } Base, op; 34 35 Matrix operator + (Matrix &_a, Matrix &_b) { 36 Matrix ret; 37 38 for (int i = 0; i < curSize; i++) { 39 for (int j = 0; j < curSize; j++) { 40 ret.val[i][j] = _a.val[i][j] + _b.val[i][j]; 41 } 42 } 43 44 return ret; 45 } 46 47 Matrix operator * (Matrix &_a, Matrix &_b) { 48 Matrix ret = Matrix(); 49 50 for (int i = 0; i < curSize; i++) { 51 for (int k = 0; k < curSize; k++) { 52 if (_a.val[i][k]) { 53 for (int j = 0; j < curSize; j++) { 54 ret.val[i][j] += _a.val[i][k] * _b.val[k][j]; 55 } 56 } 57 } 58 } 59 60 return ret; 61 } 62 63 Matrix operator ^ (Matrix &__a, int _p) { 64 Matrix _a = __a; 65 Matrix ret = Matrix(true); 66 67 while (_p) { 68 if (_p & 1) ret = ret * _a; 69 _a = _a * _a; 70 _p >>= 1; 71 } 72 73 return ret; 74 } 75 76 const int kind = 26; 77 const int maxn = 30; 78 79 int root, cntNode; 80 81 struct Node { 82 int child[kind]; 83 int fail; 84 bool end; 85 86 void init() { 87 for (int i = 0; i < kind; i++) child[i] = -1; 88 fail = -1; 89 end = false; 90 } 91 } node[maxn]; 92 93 int Q[maxn], head, tail; 94 95 void init() { 96 root = cntNode = 0; 97 node[root].init(); 98 } 99 100 void insert(char *_s) { 101 int _p = root, index; 102 103 while (*_s) { 104 index = *_s - 'a'; 105 if (node[_p].child[index] == -1) { 106 node[++cntNode].init(); 107 node[_p].child[index] = cntNode; 108 } 109 _p = node[_p].child[index]; 110 _s++; 111 } 112 node[_p].end = true; 113 } 114 115 void buildMat() { 116 op = Matrix(); 117 Base = Matrix(); 118 Base.val[0][0] = 1; 119 120 head = tail = 0; 121 Q[tail++] = root; 122 123 while (head < tail) { 124 int u = Q[head++]; 125 126 for (int i = 0; i < kind; i++) { 127 int c = node[u].child[i]; 128 129 if (~c) { 130 if (u == root) { 131 node[c].fail = root; 132 } else { 133 node[c].fail = node[node[u].fail].child[i]; 134 if (node[node[c].fail].end) node[c].end = true; 135 } 136 Q[tail++] = c; 137 } else { 138 if (u == root) { 139 node[u].child[i] = root; 140 } else { 141 node[u].child[i] = node[node[u].fail].child[i]; 142 } 143 } 144 } 145 } 146 147 for (int i = 0; i < curSize; i++) { 148 if (node[i].end) continue; 149 150 for (int j = 0; j < kind; j++) { 151 int t = node[i].child[j]; 152 153 if (node[t].end) continue; 154 op.val[i][t]++; 155 } 156 } 157 158 // for (int i = 0; i <= cntNode; i++) { 159 // printf("%d : fail %d ", i, node[i].fail); 160 // for (int j = 0; j < kind; j++) { 161 // printf(" %d", node[i].child[j]); 162 // } 163 // puts(""); 164 // } 165 // op.print(); 166 } 167 168 Matrix calSum(Matrix &_mat, int _p) { 169 Matrix ONE = Matrix(true), ep = _mat; 170 Matrix ret = Matrix(), cur = Matrix(true), tmp; 171 172 while (_p) { 173 if (_p & 1) { 174 ret = ret * ep; 175 ret = ret + cur; 176 } 177 tmp = ONE + ep; 178 cur = cur * tmp; 179 ep = ep * ep; 180 _p >>= 1; 181 } 182 ret = ret * _mat; 183 184 return ret; 185 } 186 187 ull cal(int _p) { 188 ull sum = 0; 189 190 // op.print(); 191 op = calSum(op, _p); 192 Base = Base * op; 193 // puts("Base:"); 194 // Base.print(); 195 196 op = Matrix(); 197 op.val[0][0] = 26; 198 op = calSum(op, _p); 199 // puts("op:"); 200 // op.print(); 201 202 for (int i = 0; i < curSize; i++) { 203 sum += op.val[0][i]; 204 sum -= Base.val[0][i]; 205 } 206 207 return sum; 208 } 209 210 int main() { 211 int n, l; 212 char buf[10]; 213 214 // freopen("in", "r", stdin); 215 while (~scanf("%d%d", &n, &l)) { 216 init(); 217 while (n--) { 218 scanf("%s", buf); 219 insert(buf); 220 } 221 curSize = cntNode + 1; 222 buildMat(); 223 printf("%I64u\n", cal(l)); 224 } 225 226 return 0; 227 }
——written by Lyon