zoukankan      html  css  js  c++  java
  • poj 2429 GCD & LCM Inverse

    http://poj.org/problem?id=2429

      数论的题通常都十分简明清晰,同时,相对其他的算法而言,也是相当的有难度的!

      这题原以为是简单的模板题,结果是搞了我一个晚上,wa了不下20次.......不过最终还是皇天不负有心人,迎来了一个accepted~

      这题题意很明确,给你两个数的gcd和lcm,让你求出原来两个数。如果有多种情况,就选和最小的两个。设所求的两个数分别是a,b,化简所求的式子:gcd(a/gcd(a,b),b/gcd(a,b))=1,同时还有a*b=gcd(a,b)*lcm(a,b)。

      令m=a/gcd(a,b)  n=b/gcd(a,b)  那么就是要解这样的一组式子:m*n=lcm(a,b)/gcd(a,b) 而且 gcd(m,n)=1。很容易就想到一个思路,分解质因数然后搜索到满足题意的答案。搜索并不困难,因为在数据范围里面,m*n最多只包含不超过11种不同的质因数,因此搜索是不二之选。

      然而,现在的问题是,如何在给定的时间里将给出的数分解质因数。注意,数值高达10^18,因此朴素的分解方法是行不通的,所以这题要用到随机算法中的Pollard_Rho快速分解质因数的算法。这题的思路就这么多!

      下面这个是我几经修改才提交通过的代码:

    Accepted Code:

    View Code
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cstdlib>
      4 #include <cmath>
      5 #include <algorithm>
      6 
      7 #define debug 0
      8 
      9 typedef __int64 ll;
     10 
     11 ll min2(ll a, ll b) {return a < b ? a : b;}
     12 ll max2(ll a, ll b) {return a > b ? a : b;}
     13 
     14 ll pri[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71};
     15 const ll inf = 0x7fffffffffffffff;
     16 ll mina, minb;
     17 ll g_d[30], g_n[30], g_b;
     18 int top;
     19 
     20 void swap(ll &a, ll &b){
     21     ll t = a;
     22 
     23     a = b;
     24     b = t;
     25 }
     26 
     27 ll gcd(ll a, ll b){
     28     while (b){
     29         ll c = a % b;
     30         a = b;
     31         b = c;
     32     }
     33     return a;
     34 }
     35 
     36 ll multi(ll a, ll b, ll n){
     37     ll tmp = 0;
     38 
     39     a %= n;
     40     while (b){
     41         if (b & 1){
     42             tmp += a;
     43             tmp %= n;
     44         }
     45         a <<= 1;
     46         a %= n;
     47         b >>= 1;
     48     }
     49 
     50     return tmp;
     51 }
     52 
     53 ll power(ll a, ll b, ll n){
     54     ll tmp = 1;
     55 
     56     a %= n;
     57     while (b){
     58         if (b & 1) tmp = multi(tmp, a, n);
     59         a = multi(a, a, n);
     60         b >>= 1;
     61     }
     62 
     63     return tmp;
     64 }
     65 
     66 bool mr(ll n){
     67     if (n == 2) return true;
     68     if (n < 2 || !(n & 1)) return false;
     69 
     70     ll k = 0, i, j, m, a;
     71 
     72     m = n - 1;
     73     while (!(m & 1)) m >>= 1, k++;
     74     for (i = 0; i < 10; i++){
     75         if (pri[i] >= n) return true;
     76         a = power(pri[i], m, n);
     77         if (a == 1) continue;
     78         for (j = 0; j < k; j++){
     79             if (a == n - 1) break;
     80             a = multi(a, a, n);
     81         }
     82         if (j == k) return false;
     83     }
     84 
     85     return true;
     86 }
     87 
     88 ll p_rho(ll c, ll n){
     89     ll i, x, y, k, d;
     90 
     91     i = 1;
     92     x = y = rand() % n;
     93     k = 2;
     94     do {
     95         i++;
     96         d = gcd(n + y - x, n);
     97         if (d > 1 && d < n) return d;
     98         if (i == k) y = x, k <<= 1;
     99         x = (multi(x, x, n) + n - 1) % n;
    100     }while (y != x);
    101 
    102     return n;
    103 }
    104 
    105 void rho(ll n){
    106     if (mr(n) || n < 2) {
    107         if (n >= 2 && g_b != 1 && g_b % n == 0){
    108             g_d[top] = n;
    109             g_n[top] = 0;
    110             while (g_b % g_d[top] == 0){
    111                 g_n[top]++;
    112                 g_b /= g_d[top];
    113             }
    114             g_d[top] = power(g_d[top], g_n[top], inf);
    115             top++;
    116         }
    117         return ;
    118     }
    119     ll t = n;
    120 
    121     while (t >= n) t = p_rho(rand() % (n - 1) + 1, n);
    122     rho(t);
    123     rho(n / t);
    124 }
    125 
    126 ll labs(ll a){
    127     return max2(a, -a);
    128 }
    129 
    130 void dfs(int pos, int end, ll *a, ll b, ll cur){
    131     if (pos >= end){
    132         #if debug
    133         printf("reach  %I64d\n", cur);
    134         #endif
    135         if (labs(cur - b / cur) < labs(mina - minb)){
    136             #if debug
    137             printf("modify  %I64d\n", cur);
    138             #endif
    139             mina = cur;
    140             minb = b / cur;
    141         }
    142         return ;
    143     }
    144     ll t = (ll) sqrt((double) b) + 1;
    145 
    146     dfs(pos + 1, end, a, b, cur);
    147     if (a[pos] * cur <= t){
    148         dfs(pos + 1, end, a, b, cur * a[pos]);
    149     }
    150 }
    151 
    152 int main(){
    153     ll a, b;
    154     #if debug
    155     printf("inf %I64d\n", inf);
    156     #endif
    157 
    158     while (~scanf("%I64d%I64d", &a, &b)){
    159         top = 0;
    160         b /= a;
    161         g_b = b;
    162         rho(b);
    163         #if debug
    164         puts("");
    165         for (int i = 0; i < top; i++){
    166             printf("%I64d\n", g_d[i]);
    167         }
    168         puts("");
    169         #endif
    170         mina = b;
    171         minb = 1;
    172         dfs(0, top, g_d, b, 1);
    173         #if debug
    174         printf("pass dfs\n");
    175         #endif
    176         if (mina > minb) swap(mina, minb);
    177         printf("%I64d %I64d\n", mina * a, minb * a);
    178     }
    179 
    180     return 0;
    181 }

      刚开始我是如下面的代码一样的做法,每次都不断找到最小的质因数,然后用来除原数。本地测试结果基本没问题,但是交上去却wa了,希望有大牛路过可以指导指导!

    Wrong Answer Code:

    View Code
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cstdlib>
      4 #include <cmath>
      5 
      6 #define debug 0
      7 
      8 typedef __int64 ll;
      9 
     10 ll min2(ll a, ll b) {return a < b ? a : b;}
     11 ll max2(ll a, ll b) {return a > b ? a : b;}
     12 
     13 int pri[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
     14 const ll inf = 0x7fffffffffffffff;
     15 ll mina, minb;
     16 
     17 ll gcd(ll a, ll b){
     18     while (b){
     19         ll c = a % b;
     20         a = b;
     21         b = c;
     22     }
     23     return a;
     24 }
     25 
     26 ll multi(ll a, ll b, ll n){
     27     ll tmp = 0;
     28 
     29     a %= n;
     30     while (b){
     31         if (b & 1){
     32             tmp += a;
     33             tmp %= n;
     34         }
     35         a <<= 1;
     36         a %= n;
     37         b >>= 1;
     38     }
     39 
     40     return tmp;
     41 }
     42 
     43 ll power(ll a, ll b, ll n){
     44     ll tmp = 1;
     45 
     46     a %= n;
     47     while (b){
     48         if (b & 1) tmp = multi(tmp, a, n);
     49         a = multi(a, a, n);
     50         b >>= 1;
     51     }
     52 
     53     return tmp;
     54 }
     55 
     56 bool mr(ll n){
     57     if (n == 2) return true;
     58     if (n < 2 || ~n & 1) return false;
     59 
     60     ll k = 0, i, j, m, a;
     61 
     62     m = n - 1;
     63     while (!(m & 1)) m >>= 1, k++;
     64     for (i = 0; i < 10; i++){
     65         if (pri[i] >= n) return true;
     66         a = power(pri[i], m, n);
     67         if (a == 1) continue;
     68         for (j = 0; j < k; j++){
     69             if (a == n - 1) break;
     70             a = multi(a, a, n);
     71         }
     72         if (j == k) return false;
     73     }
     74 
     75     return true;
     76 }
     77 
     78 ll p_rho(ll c, ll n){
     79     ll i, x, y, k, d;
     80 
     81     i = 1;
     82     x = y = rand() % n;
     83     k = 2;
     84     do {
     85         i++;
     86         d = gcd(n + y - x, n);
     87         if (d > 1 && d < n) return d;
     88         if (i == k) y = x, k <<= 1;
     89         x = (multi(x, x, n) + n - c) % n;
     90     }while (y != x);
     91 
     92     return n;
     93 }
     94 
     95 ll rho(ll n){
     96     if (mr(n)) return n;
     97 
     98     ll t = n;
     99     ll a = n, b = n;
    100     #if debug
    101     printf("pass\n");
    102     #endif
    103     while (t >= n) t = p_rho(rand() % (n - 1) + 1, n);
    104     if (t >= 2) a = rho(t);
    105     if ((n / t) >= 2) b = rho(n / t);
    106     return min2(a, b);
    107 }
    108 
    109 ll labs(ll a){
    110     return max2(a, -a);
    111 }
    112 
    113 void dfs(int pos, int end, ll *a, ll b, ll cur){
    114     if (pos >= end){
    115         #if debug
    116         printf("reach  %I64d\n", cur);
    117         #endif
    118         if (labs(cur - b / cur) < labs(mina - minb)){
    119             #if debug
    120             printf("modify  %I64d\n", cur);
    121             #endif
    122             mina = cur;
    123             minb = b / cur;
    124         }
    125         return ;
    126     }
    127     ll t = (ll) sqrt((double) b) + 1;
    128 
    129     if (a[pos] * cur <= t){
    130         dfs(pos + 1, end, a, b, cur * a[pos]);
    131     }
    132     dfs(pos + 1, end, a, b, cur);
    133 }
    134 
    135 void swap(ll &a, ll &b){
    136     ll t = a;
    137     a = b;
    138     b = t;
    139 }
    140 
    141 int main(){
    142     ll a, b, t;
    143     ll d[12], n[12];
    144     int top;
    145     #if debug
    146     printf("inf %I64d\n", inf);
    147     #endif
    148 
    149     while (~scanf("%I64d%I64d", &a, &b)){
    150         top = 0;
    151         b /= a;
    152         t = b;
    153         while (b != 1){
    154             d[top] = rho(b);
    155             n[top] = 0;
    156             while (b % d[top] == 0){
    157                 n[top]++;
    158                 b /= d[top];
    159             }
    160             d[top] = power(d[top], n[top], inf);
    161             top++;
    162         }
    163         #if debug
    164         puts("");
    165         for (int i = 0; i < top; i++){
    166             printf("%I64d\n", d[i]);
    167         }
    168         puts("");
    169         #endif
    170         mina = t;
    171         minb = 1;
    172         dfs(0, top, d, t, 1);
    173         #if debug
    174         printf("pass dfs\n");
    175         #endif
    176         if (mina > minb) swap(mina, minb);
    177         printf("%I64d %I64d\n", mina * a, minb * a);
    178     }
    179 
    180     return 0;
    181 }

      用一个相对稳定的Pollard_Rho模板做这题:

    View Code
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cstdlib>
      4 #include <cmath>
      5 #include <algorithm>
      6 #include <iostream>
      7 
      8 #define debug 0
      9 
     10 using namespace std;
     11 
     12 typedef __int64 ll;
     13 
     14 ll rd(){
     15     return rand() * rand();
     16 }
     17 
     18 ll gcd(ll a, ll b){
     19     if (!b) return a;
     20     return gcd(b, a % b);
     21 }
     22 
     23 ll multi(ll a, ll b, ll n){
     24     ll tmp = 0;
     25 
     26     while (b){
     27         if (b & 1){
     28             tmp += a;
     29             tmp %= n;
     30         }
     31         a <<= 1;
     32         a %= n;
     33         b >>= 1;
     34     }
     35 
     36     return tmp;
     37 }
     38 
     39 ll power(ll a, ll m, ll n){
     40     ll tmp = 1;
     41 
     42     a %= n;
     43     while (m){
     44         if (m & 1) tmp = multi(tmp, a, n);
     45         a = multi(a, a, n);
     46         m >>= 1;
     47     }
     48 
     49     return tmp;
     50 }
     51 
     52 bool mr(ll n){
     53     if (n == 2) return true;
     54     if (n < 2 || ~n & 1) return false;
     55 
     56     int t = 0;
     57     ll a, x, y, u = n - 1;
     58 
     59     while (~u & 1) t++, u >>= 1;
     60     for (int i = 0; i < 8; i++){
     61         a = rd() % (n - 1) + 1;
     62         x = power(a, u, n);
     63         for (int j = 0; j < t; j++){
     64             y = multi(x, x, n);
     65             if (y == 1 && x != 1 && x != n - 1) return false;
     66             x = y;
     67         }
     68         if (x != 1) return false;
     69     }
     70 
     71     return true;
     72 }
     73 
     74 ll rho(ll n, ll c){
     75     ll x, y, d, i = 1, k = 2;
     76 
     77     x = rd() % (n - 1) + 1;
     78     y = x;
     79     while (true){
     80         i++;
     81         x = (multi(x, x, n) + c) % n;
     82         d = gcd(y - x, n);
     83         if (1 < d && d < n) return d;
     84         if (x == y) return n;
     85         if (i == k) y = x, k <<= 1;
     86     }
     87 }
     88 
     89 void fac(ll n, int k, ll *p, int &cnt){
     90     if (n == 1) return ;
     91     if (mr(n)){
     92         p[cnt++] = n;
     93         return ;
     94     }
     95 
     96     ll t = n;
     97 
     98     while (t >= n) t = rho(t, k--);
     99     fac(t, k, p, cnt);
    100     fac(n / t, k, p, cnt);
    101 }
    102 
    103 ll mina, minb;
    104 
    105 ll max2(ll a, ll b){
    106     return a > b ? a : b;
    107 }
    108 
    109 ll absi64(ll a){
    110     return max2(a, -a);
    111 }
    112 
    113  void dfs(int pos, int end, ll *a, ll b, ll cur){
    114      if (pos >= end){
    115          #if debug
    116          printf("reach  %I64d\n", cur);
    117          #endif
    118          if (absi64(cur - b / cur) < absi64(mina - minb)){
    119              #if debug
    120              printf("modify  %I64d\n", cur);
    121              #endif
    122              mina = cur;
    123              minb = b / cur;
    124          }
    125          return ;
    126      }
    127      ll t = (ll) sqrt((double) b) + 1;
    128 
    129      dfs(pos + 1, end, a, b, cur);
    130      if (a[pos] * cur <= t){
    131          dfs(pos + 1, end, a, b, cur * a[pos]);
    132      }
    133  }
    134 
    135 void swap(ll &a, ll &b){
    136     ll t = a;
    137     a = b;
    138     b = t;
    139 }
    140 
    141 int main(){
    142     ll a, b, t;
    143     int cnt, m;
    144     ll f[80];
    145 
    146     while (cin >> a >> b){
    147         b /= a;
    148         cnt = 0;
    149         fac(b, 107, f, cnt);
    150         sort(f, f + cnt);
    151         #if debug
    152         for (int i = 0; i < cnt; i++){
    153             cout << f[i] << endl;
    154         }
    155         #endif
    156         m = f[cnt] = 0;
    157         t = f[0];
    158         for (int i = 1; i <= cnt; i++){
    159             if (t == f[i]) f[m] *= t;
    160             else {
    161                 t = f[i];
    162                 m++;
    163                 f[m] = t;
    164             }
    165         }
    166         #if debug
    167         cout << endl;
    168         for (int i = 0; i < m; i++){
    169             cout << "multi  " << f[i] << endl;
    170         }
    171         #endif
    172         mina = 1;
    173         minb = b;
    174         if (b != 1) dfs(0, m, f, b, 1);
    175         if (mina > minb) swap(mina, minb);
    176         cout << mina * a << ' ' << minb * a << endl;
    177     }
    178 
    179     return 0;
    180 }

      ——written by Lyon

  • 相关阅读:
    maven父子模块deploy 问题
    lua post参数获取,参数截断
    PhpStorm, XDebug, and DBGp Proxy
    Dia Diagram Mac OSX Yosemite Fix 闪退 xterm
    sql优化-隐形转换危害
    分页栏页码输入框校验
    ftp文件服务器搭建
    按照配置node环境
    openssl 生成ssh证书
    n-Queens(n皇后)问题的简单回溯
  • 原文地址:https://www.cnblogs.com/LyonLys/p/poj_2429_Lyon.html
Copyright © 2011-2022 走看看