http://poj.org/problem?id=3233
矩阵快速幂的题,求ΣA^i(1≤i≤k)的矩阵并输出。将它二分,用快速幂的方法来O(nlogn)的复杂度完成计算。
代码如下:
View Code
1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 #include <algorithm> 5 6 using namespace std; 7 typedef int ll; 8 const int matSize = 31; 9 const int stdMod = 1000000007; 10 int calSize = matSize; 11 int mod = stdMod; 12 13 struct Matrix { 14 ll val[matSize][matSize]; 15 16 Matrix(bool Init = false) { 17 for (int i = 0; i < calSize; i++) { 18 for (int j = 0; j < calSize; j++) { 19 val[i][j] = 0; 20 } 21 if (Init) val[i][i] = 1; 22 } 23 } 24 25 void print() { 26 for (int i = 0; i < calSize; i++) { 27 for (int j = 0; j < calSize; j++) { 28 if (j) putchar(' '); 29 printf("%d", val[i][j]); 30 } 31 puts(""); 32 } 33 } 34 } Base; 35 36 Matrix operator * (Matrix &_a, Matrix &_b) { 37 Matrix ret = Matrix(); 38 39 for (int i = 0; i < calSize; i++) { 40 for (int k = 0; k < calSize; k++) { 41 if (_a.val[i][k]) { 42 for (int j = 0; j < calSize; j++) { 43 ret.val[i][j] += _a.val[i][k] * _b.val[k][j]; 44 ret.val[i][j] %= mod; 45 } 46 } 47 } 48 } 49 50 return ret; 51 } 52 53 Matrix operator ^ (Matrix &_a, ll _p) { 54 Matrix ret = Matrix(true); 55 Matrix __a = _a; 56 57 while (_p) { 58 if (_p & 1) { 59 ret = ret * __a; 60 } 61 __a = __a * __a; 62 _p >>= 1; 63 } 64 65 return ret; 66 } 67 68 Matrix operator + (Matrix &_a, Matrix &_b) { 69 Matrix ret; 70 71 for (int i = 0; i < calSize; i++) { 72 for (int j = 0; j < calSize; j++) { 73 ret.val[i][j] = (_a.val[i][j] + _b.val[i][j]) % mod; 74 } 75 } 76 //puts("~~~~~~"); 77 //ret.print(); 78 79 return ret; 80 } 81 82 void deal(int k) { 83 Matrix tmp = Base, ans = Matrix(), ep = Base, one = Matrix(true), as; 84 85 while (k) { 86 // puts("tmp"); 87 // tmp.print(); 88 if (k & 1) { 89 ans = ans * ep; 90 ans = ans + tmp; 91 } 92 as = one + ep; 93 tmp = tmp * as; 94 ep = ep * ep; 95 k >>= 1; 96 // puts("!!!"); 97 // ans.print(); 98 // puts("~~~"); 99 } 100 101 ans.print(); 102 } 103 104 105 int main() { 106 int k; 107 108 // freopen("in", "r", stdin); 109 while (~scanf("%d%d%d", &calSize, &k, &mod)) { 110 for (int i = 0; i < calSize; i++) { 111 for (int j = 0; j < calSize; j++) { 112 scanf("%d", &Base.val[i][j]); 113 Base.val[i][j] %= mod; 114 } 115 } 116 deal(k); 117 } 118 119 return 0; 120 }
——written by Lyon