zoukankan      html  css  js  c++  java
  • poj 3862 && LA 4589 Asteroids (三维凸包+多面体重心)

    3862 -- Asteroids

    ACM-ICPC Live Archive

      用给出的点求出凸包的重心,并求出重心到多边形表面的最近距离。

    代码如下:

      1 #include <cstdio>
      2 #include <iostream>
      3 #include <algorithm>
      4 #include <cstring>
      5 #include <cmath>
      6 
      7 using namespace std;
      8 
      9 const double EPS = 1e-10;
     10 const int N = 333;
     11 inline int sgn(double x) { return (x > EPS) - (x < -EPS);}
     12 struct Point {
     13     double x, y, z;
     14     Point() {}
     15     Point(double x, double y, double z) : x(x), y(y), z(z) {}
     16     bool operator < (Point a) const {
     17         if (sgn(x - a.x)) return x < a.x;
     18         if (sgn(y - a.y)) return y < a.y;
     19         return z < a.z;
     20     }
     21     bool operator == (Point a) const { return !sgn(x - a.x) && !sgn(y - a.y) && !sgn(z - a.z);}
     22     Point operator + (Point a) { return Point(x + a.x, y + a.y, z + a.z);}
     23     Point operator - (Point a) { return Point(x - a.x, y - a.y, z - a.z);}
     24     Point operator * (double p) { return Point(x * p, y * p, z * p);}
     25     Point operator / (double p) { return Point(x / p, y / p, z / p);}
     26 } ;
     27 inline double dot(Point a, Point b) { return a.x * b.x + a.y * b.y + a.z * b.z;}
     28 inline double dot(Point o, Point a, Point b) { return dot(a - o, b - o);}
     29 inline Point cross(Point a, Point b) { return Point(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);}
     30 inline Point cross(Point o, Point a, Point b) { return cross(a - o, b - o);}
     31 inline double veclen(Point x) { return sqrt(dot(x, x));}
     32 inline double area(Point o, Point a, Point b) { return veclen(cross(o, a, b)) / 2.0;}
     33 inline double volume(Point o, Point a, Point b, Point c) { return dot(cross(o, a, b), c - o) / 6.0;}
     34 
     35 struct _3DCH{
     36     Point pt[N];
     37     int pcnt;
     38     struct Face {
     39         int a, b, c;
     40         bool ok;
     41         Face() {}
     42         Face(int a, int b, int c) : a(a), b(b), c(c) { ok = true;}
     43     } fc[N << 4];
     44     int fcnt;
     45     int fid[N][N];
     46 
     47     bool outside(int p, int a, int b, int c) { return sgn(volume(pt[a], pt[b], pt[c], pt[p])) < 0;}
     48     bool outside(int p, int f) { return outside(p, fc[f].a, fc[f].b, fc[f].c);}
     49     void addface(int a, int b, int c, int d) {
     50         if (outside(d, a, b, c)) fc[fcnt] = Face(c, b, a), fid[c][b] = fid[b][a] = fid[a][c] = fcnt++;
     51         else fc[fcnt] = Face(a, b, c), fid[a][b] = fid[b][c] = fid[c][a] = fcnt++;
     52     }
     53 
     54     bool dfs(int p, int f) {
     55         if (!fc[f].ok) return true;
     56         int a = fc[f].a, b = fc[f].b, c = fc[f].c;
     57         if (outside(p, a, b, c)) {
     58             fc[f].ok = false;
     59             if (!dfs(p, fid[b][a])) addface(p, a, b, c);
     60             if (!dfs(p, fid[c][b])) addface(p, b, c, a);
     61             if (!dfs(p, fid[a][c])) addface(p, c, a, b);
     62             return true;
     63         }
     64         return false;
     65     }
     66     void build() {
     67         bool ok;
     68         fcnt = 0;
     69         sort(pt, pt + pcnt);
     70         pcnt = unique(pt, pt + pcnt) - pt;
     71         ok = false;
     72         for (int i = 2; i < pcnt; i++) {
     73             if (sgn(area(pt[0], pt[1], pt[i]))) {
     74                 ok = true;
     75                 swap(pt[i], pt[2]);
     76                 break;
     77             }
     78         }
     79         if (!ok) return ;
     80         ok = false;
     81         for (int i = 3; i < pcnt; i++) {
     82             if (sgn(volume(pt[0], pt[1], pt[2], pt[i]))) {
     83                 ok = true;
     84                 swap(pt[i], pt[3]);
     85                 break;
     86             }
     87         }
     88         if (!ok) return ;
     89         addface(0, 1, 2, 3);
     90         addface(1, 2, 3, 0);
     91         addface(2, 3, 0, 1);
     92         addface(3, 0, 1, 2);
     93         for (int i = 4; i < pcnt; i++) {
     94             for (int j = fcnt - 1; j >= 0; j--) {
     95                 if (outside(i, j)) {
     96                     dfs(i, j);
     97                     break;
     98                 }
     99             }
    100         }
    101         int sz = fcnt;
    102         fcnt = 0;
    103         for (int i = 0; i < sz; i++) if (fc[i].ok) fc[fcnt++] = fc[i];
    104     }
    105     double facearea() {
    106         double ret = 0.0;
    107         for (int i = 0; i < fcnt; i++) ret += area(pt[fc[i].a], pt[fc[i].b], pt[fc[i].c]);
    108         return ret;
    109     }
    110     bool same(int i, int j) {
    111         int a = fc[i].a, b = fc[i].b, c = fc[i].c;
    112         if (sgn(volume(pt[a], pt[b], pt[c], pt[fc[j].a]))) return false;
    113         if (sgn(volume(pt[a], pt[b], pt[c], pt[fc[j].b]))) return false;
    114         if (sgn(volume(pt[a], pt[b], pt[c], pt[fc[j].c]))) return false;
    115         return true;
    116     }
    117     int facecnt() {
    118         int cnt = 0;
    119         for (int i = 0; i < fcnt; i++) {
    120             bool ok = true;
    121             for (int j = 0; j < i; j++) {
    122                 if (same(i, j)) {
    123                     ok = false;
    124                     break;
    125                 }
    126             }
    127             if (ok) cnt++;
    128         }
    129         return cnt;
    130     }
    131     Point gravity() {
    132         Point ret = Point(0.0, 0.0, 0.0);
    133         Point O = Point(0.0, 0.0, 0.0);
    134         double vol = 0.0;
    135         for (int i = 0; i < fcnt; i++) {
    136             double tmp = volume(pt[fc[i].a], pt[fc[i].b], pt[fc[i].c], O);
    137             ret = ret + (pt[fc[i].a] + pt[fc[i].b] + pt[fc[i].c]) / 4.0 * tmp;
    138             vol += tmp;
    139         }
    140 //        cout << ret.x << ' ' << ret.y << ' ' << ret.z << endl;
    141         return ret / vol;
    142     }
    143 } ch;
    144 
    145 inline double pt2plane(Point o, Point a, Point b, Point c) { return 3.0 * fabs(volume(o, a, b, c) / area(a, b, c));}
    146 
    147 double getMin() {
    148     double ret = 1e100;
    149     Point g = ch.gravity();
    150     for (int i = 0; i < ch.fcnt; i++) {
    151         ret = min(ret, pt2plane(g, ch.pt[ch.fc[i].a], ch.pt[ch.fc[i].b], ch.pt[ch.fc[i].c]));
    152     }
    153 //    cout << ret << endl;
    154     return ret;
    155 }
    156 
    157 int main() {
    158 //    freopen("in", "r", stdin);
    159     double x, y, z;
    160     while (true) {
    161         double ans = 0.0;
    162         for (int i = 0; i < 2; i++) {
    163             if (scanf("%d", &ch.pcnt) == -1) return 0;
    164             for (int j = 0; j < ch.pcnt; j++) {
    165                 scanf("%lf%lf%lf", &x, &y, &z);
    166                 ch.pt[j] = Point(x, y, z);
    167             }
    168             ch.build();
    169             ans += getMin();
    170         }
    171         printf("%.8f
    ", ans);
    172     }
    173     return 0;
    174 }
    View Code

    ——written by Lyon

  • 相关阅读:
    微众银行面试小总结
    关于撑开父容器高度的小探讨
    2015年9月阿里校招前端工程师笔试题
    高性能JavaScript 重排与重绘
    高性能JavaScript DOM编程
    纯CSS3动画实现小黄人
    JS+css3实现图片画廊效果总结
    新游戏《机械险境》
    Twitter "fave"动画
    fragment 与 activity
  • 原文地址:https://www.cnblogs.com/LyonLys/p/poj_3862_LA_4589_Lyon.html
Copyright © 2011-2022 走看看