Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5395 Accepted Submission(s): 2032
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The
input contains several test cases. The first line of the input is a
single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
以前有做过求x的x次方的最后一位数字是什么,但是这里求最高位的数字是几,初一想,这里的每一位在相乘的过程中对可能对最高位的值有贡献,所以相对求位数求余的求商肯定是不行了。 这里应该对 一个数有这样的理解,一个数是由每一位的基数乘以相对应的权值,例如 123456 , 基数"1"的权值为 10^5, 基数 "2" 的权值为 10^4......所以该题要求的就是最高位的基数。
对 x^x 取对数,得 x* ln( x )/ ln( 10 ), 现假设这个值为 X.abcdeefg 那么 10^X 就是 最高位对应的权值,10^ 0.abcdefg 就是最高位的基数。注意这里得到的并不是一个整数,为什么呢? 因为这里是强行将后面位的值也转化到最高位上来了,这有点像大数中,如果不满进制却强行进位,显然那样会进给高位一个小数而不是一个天经地义的整数。得到 10^ 0.abcdefg 后,再用 double floor ( double ) 函数取下整就得到最高位的数值大小了。 over...... 想了老半天啊。
代码如下:
#include <stdio.h> #include <math.h> int T; int main( ) { scanf( "%d", &T ); while( T-- ) { int num; scanf( "%d", &num ); double temp= num* log( num )/ log( 10 ); double res= temp- floor( temp ); int ans= ( int )floor( pow( 10, res ) ); printf( "%d\n", ans ); } return 0; }