zoukankan      html  css  js  c++  java
  • HDU1711Number Sequence KMP

    Number Sequence

                                                                                                          Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                                                                                                                                     Total Submission(s): 3036    Accepted Submission(s): 1356


    Problem Description

    Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
     

    Input

    The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
     

    Output

    For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
     

    Sample Input
    2
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 1 3
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 2 1
     

    Sample Output
    6
    -1
       题目只是将字符串匹配变成了整型数据的匹配,其思想还是一样的,前面没有看见每个数据的范围是-1000000 - 1000000,直接用gets(  )进行读取,后果可想而知,RE了,当然就是数组开的不够大罗。当然如果系统能够让我开个2000000000000的数组应该也行吧,哦,那可能又会超时。
      代码如下:
    #include <stdio.h>
    #include <string.h>
    
    int o[1000010], s[10010];
    
    int M, N;
    
    void getnext( int *s, int *next )
    {
    	int k= 1, j= 0;
    	while( k< M )
    	{
    		if( j== 0|| s[k]== s[j] )
    		{
    			++j, ++k;
    			if( s[k]== s[j] )
    			{
    				next[k]= next[j];
    			}
    			else
    			{
    				next[k]= j;
    			}
    		}
    		else
    		{
    			j= next[j];
    		}
    	}
    }
    
    int kmp( int *o, int *s, int *next )
    {
    	int k= 0, j= 0;
    	while( k<= N&& j<= M )
    	{
    		if( j== 0|| o[k]== s[j] )
    		{
    			++j, ++k;
    		}
    		else
    		{
    			j= next[j];
    		}
    	}
    	if( j> M )
    	{
    		return k- M;
    	}
    	else
    	{
    		return -1;
    	}
    }
    
    int main(  )
    {
    	int T, next[20010];
    	scanf( "%d" ,&T );
    	while( T-- )
    	{
    		scanf( "%d %d", &N, &M );
    		for( int i= 1; i<= N; ++i )
    		{
    			scanf( "%d", &o[i] );
    		}
    		for( int i= 1; i<= M; ++i )
    		{
    			scanf( "%d", &s[i] );
    		}
    		getnext( s, next );
    		int ans= kmp( o, s, next );
    		if( ans )
    		{
    			printf( "%d\n", kmp( o, s, next ) );
    		}
    	}
    	return 0;
    }	
    

  • 相关阅读:
    shell循环
    shell选择语句
    shell运算符
    shell变量
    前端基础复习
    flask 模板
    flask 会话技术
    flask 项目结构
    Tornado 框架介绍
    flask-models 操作
  • 原文地址:https://www.cnblogs.com/Lyush/p/2116490.html
Copyright © 2011-2022 走看看