zoukankan      html  css  js  c++  java
  • HDU1159 Common Subsequence 最长上升子序列

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 9595    Accepted Submission(s): 3923


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     


    Sample Input
    abcfbc abfcab programming contest abcd mnp
     


    Sample Output
    4 2 0
     
      前面写了一份代码,一直不知到哪里处理错了,后来参考了别人的代码后发现了一个别人都是那样写,但是我却一直没注意的地方,那就是动态的方程在第一个元素的相等的时,dp[0][0] = dp[-1][-1] + 1, 天哪,这肯定就会出错了。在处理时可以选择字符的读取从第一个位置开始,或者把 i 号字符的状态存储到i+1号位置去,这样就从1号开始处理了,判定是就是 s1[i-1] == s1[j-1] ?
      代码如下:
     1 #include <cstring>
    2 #include <cstdlib>
    3 #include <cstdio>
    4 #define Max( a, b ) (a) > (b) ? (a) : (b)
    5 using namespace std;
    6
    7 char s1[1005], s2[1005];
    8
    9 int dp[1005][1005];
    10
    11 int main()
    12 {
    13 int len1, len2;
    14 while( scanf( "%s %s", s1, s2 ) != EOF )
    15 {
    16 memset( dp, 0, sizeof(dp) );
    17 len1 = strlen( s1 ), len2 = strlen( s2 );
    18 for( int i = 1; i <= len1; ++i )
    19 {
    20 for( int j = 1; j <= len2; ++j )
    21 {
    22 if( s1[i-1] == s2[j-1] )
    23 {
    24 dp[i][j] = dp[i-1][j-1] + 1;
    25 }
    26 else
    27 {
    28 dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    29 }
    30 }
    31 }
    32 printf( "%d\n", dp[len1][len2] );
    33 }
    34 return 0;
    35 }

      第二种处理方法:

     1 #include <cstring>
    2 #include <cstdlib>
    3 #include <cstdio>
    4 #define Max( a, b ) (a) > (b) ? (a) : (b)
    5 using namespace std;
    6
    7 char s1[1005], s2[1005];
    8
    9 int dp[1005][1005];
    10
    11 int main()
    12 {
    13 int len1, len2;
    14 while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
    15 {
    16 memset( dp, 0, sizeof(dp) );
    17 len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
    18 for( int i = 1; i <= len1; ++i )
    19 {
    20 for( int j = 1; j <= len2; ++j )
    21 {
    22 if( s1[i] == s2[j] )
    23 {
    24 dp[i][j] = dp[i-1][j-1] + 1;
    25 }
    26 else
    27 {
    28 dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    29 }
    30 }
    31 }
    32 printf( "%d\n", dp[len1][len2] );
    33 }
    34 return 0;
    35 }

      

  • 相关阅读:
    如何在外部获取当前A标签的ID值
    获取<a>标签值</a>的标签值及更改
    Mysql : Maximum execution time of 30 seconds exceeded
    Ajax+PHP实现的进度条--实例
    HTML控件 隐藏
    Ajax学习--理解 Ajax 及其工作原理
    XMLHttpRequest 对象属性参数参考
    七、smarty--缓存的控制
    六、smarty-缓存控制前的页面静态化原理
    Java 的 List 与 Scala 的 Seq 相互转换
  • 原文地址:https://www.cnblogs.com/Lyush/p/2161466.html
Copyright © 2011-2022 走看看