zoukankan      html  css  js  c++  java
  • 湖南工业大学个人选拔赛第二场 解题报告

    A.连续子串和

    贪心题,枚举每一个数字作为结束点。保留前i位的前缀和sum[i],对于第i为结束的合法序列,其值为sum[i]-sum[i-K],sum[i]-sum[i-K-1],...,sum[i]-sum[0],那么我们只需要对每一个 i 保留sum[0]到sum[i-K]的最小值即可。

    代码如下:

    Problem A
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    const int INF = 0x7fffffff;
    int N, K;
    int f[1000005];
    
    int solve() {
        int ret = INF+1;
        int Min = INF;
        for (int i = K; i <= N; ++i) {
            Min = min(Min, f[i-K]);
            ret = max(ret, f[i]-Min);
        }
        return ret;
    }
    
    int main() {
    //    freopen("data.in", "r", stdin);
    //    freopen("data.out", "w", stdout);
        while (scanf("%d %d", &N, &K) != EOF) {
            for (int i = 1; i <= N; ++i) {
                scanf("%d", &f[i]);
                f[i] += f[i-1];
            }
            printf("%d\n", solve());
        }
        return 0;    
    }

    B.谎言

    水题,直接做一个取余操作就可以了,也可以把每一位对应的位权先计算出来乘上系数再加起来。

    代码如下:

    Problem B
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    
    char num[1005];
    int mod;
    
    void solve() {
        int t = 0;
        int len = strlen(num);
        for (int i = 0; i < len; ++i) {
            t = t*10 + num[i]-'0';
            t %= mod;
        }
        printf(t ? "%d\n" : "YES\n", t);
    }
    
    int main() {
    //    freopen("data.in", "r", stdin);
    //    freopen("data.out", "w", stdout);
        while (scanf("%s %d", num, &mod) != EOF) {
            solve();
        }
        return 0;    
    }

    C.费马定理

    数学题,由于已经告知费马定理的存在,那么可以证明最小的满足要求的x一定是p-1的因子。可以假设如果x不是p-1的因子的话,那么令p-1=k*x+r,那么有a^(k*x) * a^r % p = 1,显然a^(k*x)%p = 1,而由于a^(p-1) % p = 1,所以a^r % p = 1,而0 < r < x并且x是满足条件最小的值,因此假设不成立。

    代码如下:

    Problem D
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <cmath>
    using namespace std;
    
    typedef long long LL;
    LL MOD;
    int a, p;
    const int INF = 0x7fffffff;
    
    int _pow(LL a, int b) {
        LL ret = 1;
        while (b) {
            if (b & 1) {
                ret *= a;
                ret    %= MOD;
            }
            a *= a;
            a %= MOD;
            b >>= 1;
        }
        return ret;
    }
    
    void solve() {
        p -= 1;
        int ret = INF;
        int LIM = (int)sqrt(double(p));
        for (int i = 1; i <= LIM; ++i) {
            if (p % i == 0) {
                if (_pow(a, i) == 1) {
                    ret = min(ret, i);    
                }
                if (_pow(a, p/i) == 1) {
                    ret = min(ret, p/i);
                }
            }
        }
        printf("%d\n", ret);
    }
    
    int main() {
    //    freopen("data.in", "r", stdin);
    //    freopen("data.out", "w", stdout);
        while (scanf("%d %d", &a, &p) != EOF) {
            MOD = p;
            solve();    
        }
        return 0;    
    }

    D.平面划分

    推理题:

       

    新加入的一条直线与前面的直线都相交能够得到最多的空间划分。考虑到绿色的线是第三根插入的线,那么标号为1,2,3的线就是新区域的边界。对于如图加入第二个V型线,新增5个区域。如果增加第三个椭圆,新增4个区域。最后推出对于直线f[i] = f[i-1] + i;对于V型线f[i] = f[i-1] + 4*i-3;对于椭圆f[i] = f[i] + 2*i-2。

    代码如下:

    Problem D
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <ctime>
    using namespace std;
    
    const int MaxN = 1000000;
    
    long long f1[MaxN+5];
    long long f2[MaxN+5];
    long long f3[MaxN+5];
    
    void pre() {
        f1[1] = f2[1] = f3[1] = 2;
        for (int i = 2; i <= MaxN; ++i) {
            f1[i] = f1[i-1] + i;
        }
        for (int i = 2; i <= MaxN; ++i) {
            f2[i] = f2[i-1] + 4*i-3;
        }
        for (int i = 2; i <= MaxN; ++i) {
            f3[i] = f3[i-1] + 2*i-2;    
        }
    }
    
    int main() {
    //    clock_t sta = clock();
    //    freopen("data.in", "r", stdin);
    //    freopen("data.out", "w", stdout);
        int N;
        pre();
        while (scanf("%d", &N) != EOF) {
            printf("%lld %lld %lld\n", f1[N], f2[N], f3[N]);
        }
    //    clock_t end = clock();
    //    printf("%f\n", 1.0*(end-sta)/1000);
        return 0;
    }

    E.连续子串和续

    利用第一题的做法加上二分搜索。设一个比例参数p,然后就是解决一个ai-p*bi的序列,至少连续K个,sum{ ai-p*bi } >= 0的问题了,二分枚举这个参数即可。

    代码如下:

    Problem E
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    const int INF = 0x7fffffff;
    const int MaxN = 1000005;
    int N, K;
    int A[MaxN], B[MaxN];
    double f[MaxN];
    
    bool Ac(double p) {
        double Min = INF;
        f[0] = 0;
        for (int i = 1; i <= N; ++i) {
            f[i] = f[i-1] + A[i]-p*B[i];    
        }
        // 得到seq序列,现在要求一个连续的长度大于K的序列,使得总和大于等于0
        for (int i = K; i <= N; ++i) {
            Min = min(Min, f[i-K]);
            if (f[i] - Min >= 0) {
                return true;
            }
        }
        return false;
    }
    
    double bsearch(double l, double r) {
        double mid, ret;
        while (r - l > 1e-8) {
            mid = (l + r) / 2;
            if (Ac(mid)) {
                ret = mid;
                l = mid + 1e-8;
            } else {
                r = mid - 1e-8;    
            }
        }
        return ret;
    }
    
    int main() {
    //    freopen("data.in", "r", stdin); 
    //    freopen("data.out", "w", stdout);
        while (scanf("%d %d", &N, &K) != EOF) {
            for (int i = 1; i <= N; ++i) {
                scanf("%d", &A[i]);
            }
            for (int i = 1; i <= N; ++i) {
                scanf("%d", &B[i]);    
            }
            printf("%.4f\n", bsearch(0, 1000));
        }    
        return 0;
    }
  • 相关阅读:
    不在折腾---hbase-0.96.2-hadoop2
    不在折腾---hive-0.13.1-bin
    不在折腾---storm-0.9.2-incubating分布式安装
    zookeeper的zoo.cfg的配置
    Linux常用命令
    不在折腾----zookeeper-3.4.5
    VMware克隆后,网卡若干问题
    防火墙基础技术-02
    JavaScript email格式校验
    js透明按钮图片滑动切换焦点图
  • 原文地址:https://www.cnblogs.com/Lyush/p/3017240.html
Copyright © 2011-2022 走看看