A.连续子串和
贪心题,枚举每一个数字作为结束点。保留前i位的前缀和sum[i],对于第i为结束的合法序列,其值为sum[i]-sum[i-K],sum[i]-sum[i-K-1],...,sum[i]-sum[0],那么我们只需要对每一个 i 保留sum[0]到sum[i-K]的最小值即可。
代码如下:
Problem A
#include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int INF = 0x7fffffff; int N, K; int f[1000005]; int solve() { int ret = INF+1; int Min = INF; for (int i = K; i <= N; ++i) { Min = min(Min, f[i-K]); ret = max(ret, f[i]-Min); } return ret; } int main() { // freopen("data.in", "r", stdin); // freopen("data.out", "w", stdout); while (scanf("%d %d", &N, &K) != EOF) { for (int i = 1; i <= N; ++i) { scanf("%d", &f[i]); f[i] += f[i-1]; } printf("%d\n", solve()); } return 0; }
B.谎言
水题,直接做一个取余操作就可以了,也可以把每一位对应的位权先计算出来乘上系数再加起来。
代码如下:
Problem B
#include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <iostream> using namespace std; char num[1005]; int mod; void solve() { int t = 0; int len = strlen(num); for (int i = 0; i < len; ++i) { t = t*10 + num[i]-'0'; t %= mod; } printf(t ? "%d\n" : "YES\n", t); } int main() { // freopen("data.in", "r", stdin); // freopen("data.out", "w", stdout); while (scanf("%s %d", num, &mod) != EOF) { solve(); } return 0; }
C.费马定理
数学题,由于已经告知费马定理的存在,那么可以证明最小的满足要求的x一定是p-1的因子。可以假设如果x不是p-1的因子的话,那么令p-1=k*x+r,那么有a^(k*x) * a^r % p = 1,显然a^(k*x)%p = 1,而由于a^(p-1) % p = 1,所以a^r % p = 1,而0 < r < x并且x是满足条件最小的值,因此假设不成立。
代码如下:
Problem D
#include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <cmath> using namespace std; typedef long long LL; LL MOD; int a, p; const int INF = 0x7fffffff; int _pow(LL a, int b) { LL ret = 1; while (b) { if (b & 1) { ret *= a; ret %= MOD; } a *= a; a %= MOD; b >>= 1; } return ret; } void solve() { p -= 1; int ret = INF; int LIM = (int)sqrt(double(p)); for (int i = 1; i <= LIM; ++i) { if (p % i == 0) { if (_pow(a, i) == 1) { ret = min(ret, i); } if (_pow(a, p/i) == 1) { ret = min(ret, p/i); } } } printf("%d\n", ret); } int main() { // freopen("data.in", "r", stdin); // freopen("data.out", "w", stdout); while (scanf("%d %d", &a, &p) != EOF) { MOD = p; solve(); } return 0; }
D.平面划分
推理题:
新加入的一条直线与前面的直线都相交能够得到最多的空间划分。考虑到绿色的线是第三根插入的线,那么标号为1,2,3的线就是新区域的边界。对于如图加入第二个V型线,新增5个区域。如果增加第三个椭圆,新增4个区域。最后推出对于直线f[i] = f[i-1] + i;对于V型线f[i] = f[i-1] + 4*i-3;对于椭圆f[i] = f[i] + 2*i-2。
代码如下:
Problem D
#include <cstdlib> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <ctime> using namespace std; const int MaxN = 1000000; long long f1[MaxN+5]; long long f2[MaxN+5]; long long f3[MaxN+5]; void pre() { f1[1] = f2[1] = f3[1] = 2; for (int i = 2; i <= MaxN; ++i) { f1[i] = f1[i-1] + i; } for (int i = 2; i <= MaxN; ++i) { f2[i] = f2[i-1] + 4*i-3; } for (int i = 2; i <= MaxN; ++i) { f3[i] = f3[i-1] + 2*i-2; } } int main() { // clock_t sta = clock(); // freopen("data.in", "r", stdin); // freopen("data.out", "w", stdout); int N; pre(); while (scanf("%d", &N) != EOF) { printf("%lld %lld %lld\n", f1[N], f2[N], f3[N]); } // clock_t end = clock(); // printf("%f\n", 1.0*(end-sta)/1000); return 0; }
E.连续子串和续
利用第一题的做法加上二分搜索。设一个比例参数p,然后就是解决一个ai-p*bi的序列,至少连续K个,sum{ ai-p*bi } >= 0的问题了,二分枚举这个参数即可。
代码如下:
Problem E
#include <cstdlib> #include <cstring> #include <cstdio> #include <iostream> #include <algorithm> using namespace std; const int INF = 0x7fffffff; const int MaxN = 1000005; int N, K; int A[MaxN], B[MaxN]; double f[MaxN]; bool Ac(double p) { double Min = INF; f[0] = 0; for (int i = 1; i <= N; ++i) { f[i] = f[i-1] + A[i]-p*B[i]; } // 得到seq序列,现在要求一个连续的长度大于K的序列,使得总和大于等于0 for (int i = K; i <= N; ++i) { Min = min(Min, f[i-K]); if (f[i] - Min >= 0) { return true; } } return false; } double bsearch(double l, double r) { double mid, ret; while (r - l > 1e-8) { mid = (l + r) / 2; if (Ac(mid)) { ret = mid; l = mid + 1e-8; } else { r = mid - 1e-8; } } return ret; } int main() { // freopen("data.in", "r", stdin); // freopen("data.out", "w", stdout); while (scanf("%d %d", &N, &K) != EOF) { for (int i = 1; i <= N; ++i) { scanf("%d", &A[i]); } for (int i = 1; i <= N; ++i) { scanf("%d", &B[i]); } printf("%.4f\n", bsearch(0, 1000)); } return 0; }