zoukankan      html  css  js  c++  java
  • Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)

    题目链接:

    https://projecteuler.net/problem=435

    题意:

    The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined recursively as (f_n = f_{n-1} + f_{n-2}) with base cases (f_0 = 0) and (f_1 = 1).

    Define the polynomials $ {F_n, n ≥ 0} $ as $F_n(x) =sum_{i=0}^{n} f_i x^i $.

    For example, (F_{7}(x) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + 13x^7), and$ F_7(11) = 268357683$.

    Let (n = 10^{15}). Find [$sum_{x=0}^{100} F_{n}(x)] $ mod (1307674368000 (= 15!)).

    题解:

    [egin{pmatrix} f_{n}x^{n} & f_{n+1}x^{n+1} & F_{n}(x) end{pmatrix} ]

    [= egin{pmatrix} f_{n-1}x^{n-1} & f_{n}x^{n} & F_{n-1}(x) end{pmatrix} egin{pmatrix} 0 & 0 & x^{2} \ 0 & 1 & 1 \ 1 & 0 & i end{pmatrix} ]

    [= egin{pmatrix} f_{0}x^{0} & f_{1}x^{1} & F_{1}(x) end{pmatrix} egin{pmatrix} 0 & 0 & x^{2} \ 0 & 1 & 1 \ 1 & 0 & i end{pmatrix}^{n-1} ]

    [= egin{pmatrix} 0 & x & x end{pmatrix} egin{pmatrix} 0 & 0 & x^{2} \ 0 & 1 & 1 \ 1 & 0 & i end{pmatrix}^{n-1} ]

    然后跑矩阵快速幂就可以得到 (F_{n}(x))了。(C)++ 会爆 (long long)... 用 (Python)吧...

    其实用 (C)++也行,就是将模数分解再用 (crt) 合并。

    代码:

    #coding: utf-8
    
    from math import sqrt
    
    mod = 1307674368000
    
    def matrix_mult(a, b) :
        n = len(a); m = len(b); h = len(b[0])
        ans = [[0, 0, 0],[0, 0, 0],[0, 0, 0]]
        for i in range(n) :
            for j in range(m) :
                for k in range(h) :
                    ans[i][k] += a[i][j] * b[j][k]
                    if ans[i][k] >= mod :
                        ans[i][k] %= mod
                    ans[i][k] %= mod
            ans[i][j] %= mod
        return ans
    
    def qpower(a, n, i) :
        ans = [[0, i, i],[0, 0, 0],[0, 0, 0]]
        while n > 0 :
            if n & 1 : ans = matrix_mult(ans, a)
            n >>= 1
            a = matrix_mult(a, a)
        return ans[0][2]
    
    if __name__ =="__main__":
        ans = 0
        for i in range(101):
            a = [[0, 0, i ** 2],
                 [0, 1, 1],
                 [1, 0, i]]
            ans += qpower(a, 10 ** 15 - 1, i)
        print( ans % mod )
    
    
  • 相关阅读:
    jps, jstack, jmap, jhat, jstat
    SpringBoot工程可执行jar修改为可执行war
    SCP后台运行
    frp实现内网远程访问
    SpringBoot项目执行脚本, 自动拉取最新代码并重启
    文本聚合函数(wm_concat, listagg, group_concat, string_agg)
    linux磁盘空间占用分析
    jdbc打印sql语句-p6spy配置
    Linux系统的buff/cache缓存清理脚本
    环境变量及免密登录
  • 原文地址:https://www.cnblogs.com/LzyRapx/p/9058311.html
Copyright © 2011-2022 走看看