并查集
并查集 :
是一种树型的数据结构,常用语处理一些不相交集合的合并及查询问题。
为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?
我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。
但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。
并查集是一种非常简单的数据结构,它主要涉及两个基本操作:
① 合并两个不相交的集合
② 判断两个元素是否属于同一个集合
基本操作:
① 合并两个不相交集合_Union(x, y)
合并操作很简单:先设置一个数组Father[x],表示x的‘父亲’的编号。那么,合并两个不相交集合的方法就是,找到一个集合的最父亲的父亲(也就是最久远的父亲),将另外一个集合的最久远的父亲的父亲指向他。
左图为两个不相交集合,右图为合并后 Father(b) = Father(g)
② 判断两个元素是否属于同一个集合 Find——Set(x)
本操作可转化为寻找两个元素的最久远的祖先是否相同、可以采用递归实现。
优化:
① Find_Set(x)时,路径压缩
寻找祖先时,我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度。为了避免这种情况,我们需要对路径进行压缩,即当我们经过 递归 找到祖先节点后,回溯的时候顺便将他的所有子孙全都直接指向祖先,这样以后再次Find_Set(x) 时复杂度就变成O(1)了,如下图所示,可见路径压缩方便了以后的查找
② Union(x, y)时,按秩合并
即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度可能会减少。
应用:
并查集常作为另一种复杂的数据结构或者算法的存储结构。常见的应用有:求无向图的连通分量个数,最近公共祖先(LCA),带限制的作业排序,实现Kruskar算法求最小生成树等。
代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 #include <cstring> 5 #include <cstdlib> 6 #include <algorithm> 7 #define MAX 1024 8 using namespace std; 9 10 int father[MAX]; 11 int rank[MAX]; 12 13 void Make_Set(int x) 14 { 15 father[x] = x; 16 rank[x] = 0; 17 } 18 19 int Find_Set(int x) 20 { 21 if (x != father[x]) 22 { 23 father[x] = Find_Set(father[x]); 24 } 25 return father[x]; 26 } 27 28 void Union(int x, int y) 29 { 30 x = Find_Set(x); 31 y = Find_Set(y); 32 if (x == y) 33 return; 34 if (rank[x] > rank[y]) 35 { 36 father[y] = x; 37 } 38 else 39 { 40 if (rank[x] == rank[y]) 41 { 42 rank[y]++; 43 } 44 father[x] = y; 45 } 46 } 47 48 int main() 49 { 50 51 }