zoukankan      html  css  js  c++  java
  • 关于齐次坐标的理解

    转载:https://www.cnblogs.com/btgyoyo/p/7085264.html

    问题:两条平行线可以相交于一点
    在欧氏几何空间,同一平面的两条平行线不能相交,这是我们都熟悉的一种场景。
    然而,在透视空间里面,两条平行线可以相交,例如:火车轨道随着我们的视线越来越窄,最后两条平行线在无穷远处交于一点。

    欧氏空间(或者笛卡尔空间)描述2D/3D几何非常适合,但是这种方法却不适合处理透视空间的问题(实际上,欧氏几何是透视几何的一个子集合),2维笛卡尔坐标可以表示为(x,y)。

    如果一个点在无穷远处,这个点的坐标将会(∞,∞),在欧氏空间,这变得没有意义。平行线在透视空间的无穷远处交于一点,但是在欧氏空间却不能,数学家发现了一种方式来解决这个问题。

    方法:齐次坐标
    简而言之,齐次坐标就是用N+1维来代表N维坐标

    我们可以在一个2D笛卡尔坐标末尾加上一个额外的变量w来形成2D齐次坐标,因此,一个点(X,Y)在齐次坐标里面变成了(x,y,w),并且有

    X = x/w

    Y = y/w

    例如,笛卡尔坐标系下(1,2)的齐次坐标可以表示为(1,2,1),如果点(1,2)移动到无限远处,在笛卡尔坐标下它变为(∞,∞),然后它的齐次坐标表示为(1,2,0),因为(1/0, 2/0) = (∞,∞),我们可以不用”∞"来表示一个无穷远处的点了,哈哈。

    为什么叫齐次坐标?

    我们把齐次坐标转化为笛卡尔坐标的方法是前面n-1个坐标分量分别除以最后一个分量即可。

    转化齐次坐标到笛卡尔坐标的过程中,我们有一个发现,例如:

    你会发现(1, 2, 3), (2, 4, 6) 和(4, 8, 12)对应同一个Euclidean point (1/3, 2/3),任何标量的乘积,例如(1a, 2a, 3a) 对应 笛卡尔空间里面的(1/3, 2/3) 。因此,这些点是“齐次的”,因为他们代表了笛卡尔坐标系里面的同一个点。换句话说,齐次坐标有规模不变性。

    证明:两条直线可以相交

    考虑如下方程组:

    我们知道在笛卡尔坐标系里面,该方程组无解,因为C ≠ D,如果C=D,两条直线就相同了。

    让我们在透视空间里面,用齐次坐标x/w, y/w代替x ,y,

    现在我们有一个解(x, y, 0),两条直线相交于(x, y, 0),这个点在无穷远处。

     
  • 相关阅读:
    centos7 /etc/rc.local需要chmod +x /etc/rc.d/rc.local
    epel源
    yum 源
    socket
    CentOS 7使用systemctl如何补全服务名称
    keepalive脑裂的处理,从节点发现访问的虚拟IP就报警,同时尝试发送内容到主节点服务器关闭keepalive和nginx,或者关机
    nginx的 keepalive_timeout参数是一个请求完成之后还要保持连
    kickstart安装步骤
    kickstart
    因客户机IP与服务器IP不在同一网段导致无盘客户机开机卡tftp,提示:PXE-E11: ARP timeout
  • 原文地址:https://www.cnblogs.com/MCSFX/p/15392787.html
Copyright © 2011-2022 走看看