概
虽然11年就提出了capsule的概念, 但是走入人们视线的应该还是这篇文章吧. 虽然现阶段, capsule没有体现出什么优势. 不过, capsule相较于传统的CNN融入了很多先验知识, 更能够拟合人类的视觉系统(我不知), 或许有一天它会大放异彩.
主要内容
直接从这个结构图讲起吧.
- Input: 1 x 28 x 28 的图片 经过 9 x 9的卷积核(stride=1, padding=0, out_channels=256)作用;
- 256 x 20 x 20的特征图, 经过primarycaps作用(9 x 9 的卷积核(strde=2, padding=0, out_channels=256);
- (32 x 8) x 6 x 6的特征图, 理解为32 x 6 x 6 x 8 = 1152 x 8, 即1152个胶囊, 每个胶囊由一个8D的向量表示(u_{i}); (这个地方要不要squash, 大部分实现都是要的.)
- 接下来digitcaps中有10个caps(对应10个类别), 1152caps和10个caps一一对应, 分别用(i, j)表示, 前一层的caps为后一层提供输入, 输入为
[hat{u}_{j|i} = W_{ij}u_i,
]
可见, 应当有1152 x 10个(W_{ij}in mathbb{R}^{16 imes 8}), 其中16是输出胶囊的维度. 最后10个caps的输出为
[s_j= sum_{i}c_{ij}hat{u}_{j|i}, v_j= frac{|s|_j^2}{1 + |s_j|^2} frac{s_j}{|s_j|}.
]
其中(c_{ij})是通过一个路由算法决定的, (v_j), 即最后的输入如此定义是出于一种直觉, 即保持原始输出((s))的方向, 同时让(v)的长度表示一个概率(这一步称为squash).
首先初始化(b_{ij}=0) (这里在程序实现的时候有一个考量, 是每一次都要初始化吗, 我看大部分的实现都是如此的).
上面的Eq.3就是
[ ag{3}
c_{ij}=frac{exp(b_{ij})}{sum_{k}exp(b_{ik})}.
]
另外(hat{mu}_{j|i} cdot v_j=hat{mu}_{j|i}^Tv_j)是一种cos相似度度量.
损失函数
损失函数采用的是margin loss:
[ ag{4}
L_k = T_k max(0, m^+ - |v_k|)^2 + lambda (1 - T_k) max(0, |v_k|-m^-)^2.
]
(m^+, m^-)通常取0.9和0.1, (lambda)通常取0.5.
代码
我的代码, 在sgd下可以训练(但是准确率只有98), 在adam下就死翘翘了, 所以代码肯定是有问题, 但是我实在是找不出来了, 这里有很多实现的汇总.
"""
Sabour S., Frosst N., Hinton G. Dynamic Routing Between Capsules.
Neural Information Processing Systems, pp. 3856-3866, 2017.
https://arxiv.org/pdf/1710.09829.pdf
The implement below refers to https://github.com/adambielski/CapsNet-pytorch.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def squash(s):
temp = s.norm(dim=-1, keepdim=True)
return (temp / (1. + temp ** 2)) * s
class PrimaryCaps(nn.Module):
def __init__(
self, in_channel, out_entities,
out_dims, kernel_size, stride, padding
):
super(PrimaryCaps, self).__init__()
self.conv = nn.Conv2d(in_channel, out_entities * out_dims,
kernel_size, stride, padding)
self.out_entities = out_entities
self.out_dims = out_dims
def forward(self, inputs):
conv_outs = self.conv(inputs).permute(0, 2, 3, 1).contiguous()
outs = conv_outs.view(conv_outs.size(0), -1, self.out_dims)
return squash(outs)
class AgreeRouting(nn.Module):
def __init__(self, in_caps, out_caps, out_dims, iterations=3):
super(AgreeRouting, self).__init__()
self.in_caps = in_caps
self.out_caps = out_caps
self.out_dims = out_dims
self.iterations = iterations
@staticmethod
def softmax(inputs, dim=-1):
return F.softmax(inputs, dim=dim)
def forward(self, inputs):
# inputs N x in_caps x out_caps x out_dims
b = torch.zeros(inputs.size(0), self.in_caps, self.out_caps).to(inputs.device)
for r in range(self.iterations):
c = self.softmax(b) # N x in_caps x out_caps !!!!!!!!!
s = (c.unsqueeze(-1) * inputs).sum(dim=1) # N x out_caps x out_dims
v = squash(s) # N x out_caps x out_dims
b = b + (v.unsqueeze(dim=1) * inputs).sum(dim=-1)
return v
class CapsLayer(nn.Module):
def __init__(self, in_caps, in_dims, out_caps, out_dims, routing):
super(CapsLayer, self).__init__()
self.in_caps = in_caps
self.in_dims = in_dims
self.routing = routing
self.weights = nn.Parameter(torch.rand(in_caps, out_caps, in_dims, out_dims))
nn.init.kaiming_uniform_(self.weights)
def forward(self, inputs):
# inputs: N x in_caps x in_dims
inputs = inputs.view(inputs.size(0), self.in_caps, 1, 1, self.in_dims)
u_pres = (inputs @ self.weights).squeeze() # N x in_caps x out_caps x out_dims
outs = self.routing(u_pres) # N x out_caps x out_dims
return outs
class CapsNet(nn.Module):
def __init__(self):
super(CapsNet, self).__init__()
# N x 1 x 28 x 28
self.conv = nn.Conv2d(1, 256, 9, 1, padding=0) # N x (32 * 8) x 20 x 20
self.primarycaps = PrimaryCaps(256, 32, 8, 9, 2, 0) # N x (6 x 6 x 32) x 8
routing = AgreeRouting(32 * 6 * 6, 10, 8, 3)
self.digitlayer = CapsLayer(32 * 6 * 6, 8, 10, 16, routing)
def forward(self, inputs):
conv_outs = F.relu(self.conv(inputs))
pri_outs = self.primarycaps(conv_outs)
outs = self.digitlayer(pri_outs)
probs = outs.norm(dim=-1)
return probs
if __name__ == "__main__":
x = torch.randn(4, 1, 28 ,28)
capsnet = CapsNet()
print(capsnet(x))
def margin_loss(logits, labels, m=0.9, leverage=0.5, adverage=True):
# outs: N x num_classes x dim
# labels: N
temp1 = F.relu(m - logits) ** 2
temp2 = F.relu(logits + m - 1) ** 2
T = F.one_hot(labels.long(), logits.size(-1))
loss = (temp1 * T + leverage * temp2 * (1 - T)).sum()
if adverage:
loss = loss / logits.size(0)
# Another implement is using scatter_
# T = torch.zero(logits.size()).long()
# T.scatter_(dim=1, index=labels.view(-1, 1), 1.).cuda() if cuda()
return loss