motivation
用两个BN(一个用于干净样本, 一个用于对抗样本), 结果当使用(mathrm{BN}_{nat})的时候, 精度能够上升, 而使用(mathrm{BN}_{adv})的时候, 也有相当的鲁棒性. 原文采用的是
[alpha mathcal{L}(f(x), y) + (1-alpha) mathcal{L}(f(x+delta), y),
]
来训练(这里(f(x))输出的是概率向量而非logits), 试试看别的组合方式, 比如
[mathcal{L}(alpha f(x_{nat}) + (1-alpha)f(x_{adv}) ,y).
]
settings
Attribute | Value |
---|---|
attack | pgd-linf |
batch_size | 128 |
beta1 | 0.9 |
beta2 | 0.999 |
dataset | cifar10 |
description | AT=0.5=default-sgd-0.1=pgd-linf-0.0314-0.25-10=128=default |
epochs | 100 |
epsilon | 0.03137254901960784 |
learning_policy | [50, 75] x 0.1 |
leverage | 0.5 |
loss | cross_entropy |
lr | 0.1 |
model | resnet32 |
momentum | 0.9 |
optimizer | sgd |
progress | False |
resume | False |
seed | 1 |
stats_log | False |
steps | 10 |
stepsize | 0.25 |
transform | default |
weight_decay | 0.0005 |
results
x轴为(alpha)从(0)变化到(1).
Accuracy | Robustness | |
---|---|---|
(0.5 mathcal{L}_{nat} + 0.5mathcal{L}_{adv}) | ![]() |
![]() |
(mathcal{L}(0.5 p_{nat} + 0.5p_{adv}, y)) | ![]() |
![]() |
(0.1 mathcal{L}_{nat} + 0.9mathcal{L}_{adv}) 48.350 | ![]() |
![]() |
(mathcal{L}(0.1 p_{nat} + 0.9p_{adv}, y)) 48.270 | ![]() |
![]() |
(0.2 mathcal{L}_{nat} + 0.8mathcal{L}_{adv}) 48.310 | ![]() |
![]() |
(mathcal{L}(0.2 p_{nat} + 0.8p_{adv}, y)) 47.960 | ![]() |
![]() |
似乎原来的形式情况更好一点.